
Find the value of $\cot \left( { - \dfrac{{15\pi }}{4}} \right)$
Answer
590.4k+ views
Hint: Note that, \[{\text{cot}}( - x) = - \cot x\]
Again, we know that the function y= cotx has a period of\[\pi \] or \[180^\circ .\], i.e. the value of cotx repeats after an interval of \[\pi \]or 180°.
Therefore write $\dfrac{{15\pi }}{4}$ as \[4\pi - \dfrac{\pi }{4}\] and proceed.
Complete step-by-step answer:
We know that the function y= cotx has a period of \[\pi \] or \[180^\circ .\], i.e. the value of cotx repeats after an interval of \[\pi \] or \[180^\circ .\].
Therefore,
\[\cot \left( { - \dfrac{{15\pi }}{4}} \right)\]
Since, \[{\text{cot}}( - x) = - \cot x\],
\[ = - \cot \left( {\dfrac{{15\pi }}{4}} \right)\]
On expanding the numerator we get,
\[ = - \cot \left( {\dfrac{{16\pi - \pi }}{4}} \right)\]
On simplification we get,
\[ = - \cot \left( {4\pi - \dfrac{\pi }{4}} \right)\]
Since, \[\left( {\dfrac{{15\pi }}{4}} \right){\text{ }}\] lies in the fourth quadrant, therefore \[\cot \left( {\dfrac{{15\pi }}{4}} \right){\text{ }}\] will be negative
\[ = - \left( { - \cot \dfrac{\pi }{3}} \right)\]
\[ = \cot \dfrac{\pi }{3}\]
As, \[\cot \dfrac{\pi }{3} = \dfrac{1}{{\sqrt 3 }}\]
\[ = \dfrac{1}{{\sqrt 3 }}\]
Therefore the value of $\cot \left( { - \dfrac{{15\pi }}{4}} \right)$is \[\dfrac{1}{{\sqrt 3 }}\].
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
Also, the trigonometric ratios of the standard angles are given by
Again, we know that the function y= cotx has a period of\[\pi \] or \[180^\circ .\], i.e. the value of cotx repeats after an interval of \[\pi \]or 180°.
Therefore write $\dfrac{{15\pi }}{4}$ as \[4\pi - \dfrac{\pi }{4}\] and proceed.
Complete step-by-step answer:
We know that the function y= cotx has a period of \[\pi \] or \[180^\circ .\], i.e. the value of cotx repeats after an interval of \[\pi \] or \[180^\circ .\].
Therefore,
\[\cot \left( { - \dfrac{{15\pi }}{4}} \right)\]
Since, \[{\text{cot}}( - x) = - \cot x\],
\[ = - \cot \left( {\dfrac{{15\pi }}{4}} \right)\]
On expanding the numerator we get,
\[ = - \cot \left( {\dfrac{{16\pi - \pi }}{4}} \right)\]
On simplification we get,
\[ = - \cot \left( {4\pi - \dfrac{\pi }{4}} \right)\]
Since, \[\left( {\dfrac{{15\pi }}{4}} \right){\text{ }}\] lies in the fourth quadrant, therefore \[\cot \left( {\dfrac{{15\pi }}{4}} \right){\text{ }}\] will be negative
\[ = - \left( { - \cot \dfrac{\pi }{3}} \right)\]
\[ = \cot \dfrac{\pi }{3}\]
As, \[\cot \dfrac{\pi }{3} = \dfrac{1}{{\sqrt 3 }}\]
\[ = \dfrac{1}{{\sqrt 3 }}\]
Therefore the value of $\cot \left( { - \dfrac{{15\pi }}{4}} \right)$is \[\dfrac{1}{{\sqrt 3 }}\].
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
Also, the trigonometric ratios of the standard angles are given by
| \[0^\circ \] | \[30^\circ \] | \[45^\circ \] | \[60^\circ \] | \[90^\circ \] | |
| \[\operatorname{Sin} x\] | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
| \[\operatorname{Cos} x\] | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
| \[\operatorname{Tan} x\] | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Undefined |
| \[Cotx\] | undefined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
| \[\cos ecx\] | undefined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
| \[\operatorname{Sec} x\] | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Undefined |
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

