
Find the value of \[\cot {70^\circ} + 4\cos {70^\circ}\].
A. \[\sqrt 2 \]
B. \[\sqrt 3 \]
C. \[0\]
D. \[1\]
Answer
516k+ views
Hint: Simplify the given expression in terms of sine angles and cosine angles and then into cosine angles to obtain the required answer by the simple trigonometric ratio formulae and trigonometric identities. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given \[\cot {70^\circ} + 4\cos {70^\circ}\]
Using \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \tan {20^\circ} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ}}}{{\cos {{20}^\circ}}} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 4\sin {{20}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[2\sin x\cos x = \sin 2x\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 2\sin {{40}^\circ}}}{{\cos {{20}^\circ}}}\]
Using \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\cos \left( { - x} \right) = \cos \left( { x} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin \left( {\dfrac{{{{20}^\circ} + {{40}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{20}^\circ} - {{40}^\circ}}}{2}} \right) + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin {{30}^\circ}\cos {{10}^\circ} + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos \left( {{{90}^\circ} - x} \right) = \sin x{\text{ and }}\sin {30^\circ} = \dfrac{1}{2}\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2 \times \dfrac{1}{2}\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos \left( {\dfrac{{{{10}^\circ} + {{50}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{10}^\circ} - {{50}^\circ}}}{2}} \right)}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos {{30}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2\cos {30^\circ} \\
\]
Using \[\cos {30^\circ} = \dfrac{{\sqrt 3 }}{2}\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2 \times \dfrac{{\sqrt 3 }}{2} = \sqrt 3 \]
Therefore, \[\cot {70^\circ} + 4\cos {70^\circ} = \sqrt 3 \].
Thus, the correct option is B. \[\sqrt 3 \]
Note: The used trigonometric ratio formulae are \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\] and the trigonometric identity formulae are \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\]. So, please do remember the useful formulae in solving the trigonometry problems.
Complete step-by-step answer:
Given \[\cot {70^\circ} + 4\cos {70^\circ}\]
Using \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \tan {20^\circ} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ}}}{{\cos {{20}^\circ}}} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 4\sin {{20}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[2\sin x\cos x = \sin 2x\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 2\sin {{40}^\circ}}}{{\cos {{20}^\circ}}}\]
Using \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\cos \left( { - x} \right) = \cos \left( { x} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin \left( {\dfrac{{{{20}^\circ} + {{40}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{20}^\circ} - {{40}^\circ}}}{2}} \right) + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin {{30}^\circ}\cos {{10}^\circ} + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos \left( {{{90}^\circ} - x} \right) = \sin x{\text{ and }}\sin {30^\circ} = \dfrac{1}{2}\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2 \times \dfrac{1}{2}\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos \left( {\dfrac{{{{10}^\circ} + {{50}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{10}^\circ} - {{50}^\circ}}}{2}} \right)}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos {{30}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2\cos {30^\circ} \\
\]
Using \[\cos {30^\circ} = \dfrac{{\sqrt 3 }}{2}\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2 \times \dfrac{{\sqrt 3 }}{2} = \sqrt 3 \]
Therefore, \[\cot {70^\circ} + 4\cos {70^\circ} = \sqrt 3 \].
Thus, the correct option is B. \[\sqrt 3 \]
Note: The used trigonometric ratio formulae are \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\] and the trigonometric identity formulae are \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\]. So, please do remember the useful formulae in solving the trigonometry problems.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
