
Find the value of \[\cot {70^\circ} + 4\cos {70^\circ}\].
A. \[\sqrt 2 \]
B. \[\sqrt 3 \]
C. \[0\]
D. \[1\]
Answer
600.6k+ views
Hint: Simplify the given expression in terms of sine angles and cosine angles and then into cosine angles to obtain the required answer by the simple trigonometric ratio formulae and trigonometric identities. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given \[\cot {70^\circ} + 4\cos {70^\circ}\]
Using \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \tan {20^\circ} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ}}}{{\cos {{20}^\circ}}} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 4\sin {{20}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[2\sin x\cos x = \sin 2x\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 2\sin {{40}^\circ}}}{{\cos {{20}^\circ}}}\]
Using \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\cos \left( { - x} \right) = \cos \left( { x} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin \left( {\dfrac{{{{20}^\circ} + {{40}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{20}^\circ} - {{40}^\circ}}}{2}} \right) + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin {{30}^\circ}\cos {{10}^\circ} + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos \left( {{{90}^\circ} - x} \right) = \sin x{\text{ and }}\sin {30^\circ} = \dfrac{1}{2}\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2 \times \dfrac{1}{2}\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos \left( {\dfrac{{{{10}^\circ} + {{50}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{10}^\circ} - {{50}^\circ}}}{2}} \right)}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos {{30}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2\cos {30^\circ} \\
\]
Using \[\cos {30^\circ} = \dfrac{{\sqrt 3 }}{2}\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2 \times \dfrac{{\sqrt 3 }}{2} = \sqrt 3 \]
Therefore, \[\cot {70^\circ} + 4\cos {70^\circ} = \sqrt 3 \].
Thus, the correct option is B. \[\sqrt 3 \]
Note: The used trigonometric ratio formulae are \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\] and the trigonometric identity formulae are \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\]. So, please do remember the useful formulae in solving the trigonometry problems.
Complete step-by-step answer:
Given \[\cot {70^\circ} + 4\cos {70^\circ}\]
Using \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \tan {20^\circ} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ}}}{{\cos {{20}^\circ}}} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 4\sin {{20}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[2\sin x\cos x = \sin 2x\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 2\sin {{40}^\circ}}}{{\cos {{20}^\circ}}}\]
Using \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\cos \left( { - x} \right) = \cos \left( { x} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin \left( {\dfrac{{{{20}^\circ} + {{40}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{20}^\circ} - {{40}^\circ}}}{2}} \right) + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin {{30}^\circ}\cos {{10}^\circ} + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos \left( {{{90}^\circ} - x} \right) = \sin x{\text{ and }}\sin {30^\circ} = \dfrac{1}{2}\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2 \times \dfrac{1}{2}\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos \left( {\dfrac{{{{10}^\circ} + {{50}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{10}^\circ} - {{50}^\circ}}}{2}} \right)}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos {{30}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2\cos {30^\circ} \\
\]
Using \[\cos {30^\circ} = \dfrac{{\sqrt 3 }}{2}\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2 \times \dfrac{{\sqrt 3 }}{2} = \sqrt 3 \]
Therefore, \[\cot {70^\circ} + 4\cos {70^\circ} = \sqrt 3 \].
Thus, the correct option is B. \[\sqrt 3 \]
Note: The used trigonometric ratio formulae are \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\] and the trigonometric identity formulae are \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\]. So, please do remember the useful formulae in solving the trigonometry problems.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

