
Find the value of \[\cot {70^\circ} + 4\cos {70^\circ}\].
A. \[\sqrt 2 \]
B. \[\sqrt 3 \]
C. \[0\]
D. \[1\]
Answer
599.7k+ views
Hint: Simplify the given expression in terms of sine angles and cosine angles and then into cosine angles to obtain the required answer by the simple trigonometric ratio formulae and trigonometric identities. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given \[\cot {70^\circ} + 4\cos {70^\circ}\]
Using \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \tan {20^\circ} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ}}}{{\cos {{20}^\circ}}} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 4\sin {{20}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[2\sin x\cos x = \sin 2x\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 2\sin {{40}^\circ}}}{{\cos {{20}^\circ}}}\]
Using \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\cos \left( { - x} \right) = \cos \left( { x} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin \left( {\dfrac{{{{20}^\circ} + {{40}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{20}^\circ} - {{40}^\circ}}}{2}} \right) + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin {{30}^\circ}\cos {{10}^\circ} + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos \left( {{{90}^\circ} - x} \right) = \sin x{\text{ and }}\sin {30^\circ} = \dfrac{1}{2}\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2 \times \dfrac{1}{2}\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos \left( {\dfrac{{{{10}^\circ} + {{50}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{10}^\circ} - {{50}^\circ}}}{2}} \right)}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos {{30}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2\cos {30^\circ} \\
\]
Using \[\cos {30^\circ} = \dfrac{{\sqrt 3 }}{2}\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2 \times \dfrac{{\sqrt 3 }}{2} = \sqrt 3 \]
Therefore, \[\cot {70^\circ} + 4\cos {70^\circ} = \sqrt 3 \].
Thus, the correct option is B. \[\sqrt 3 \]
Note: The used trigonometric ratio formulae are \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\] and the trigonometric identity formulae are \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\]. So, please do remember the useful formulae in solving the trigonometry problems.
Complete step-by-step answer:
Given \[\cot {70^\circ} + 4\cos {70^\circ}\]
Using \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \tan {20^\circ} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ}}}{{\cos {{20}^\circ}}} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 4\sin {{20}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[2\sin x\cos x = \sin 2x\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 2\sin {{40}^\circ}}}{{\cos {{20}^\circ}}}\]
Using \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\cos \left( { - x} \right) = \cos \left( { x} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin \left( {\dfrac{{{{20}^\circ} + {{40}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{20}^\circ} - {{40}^\circ}}}{2}} \right) + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin {{30}^\circ}\cos {{10}^\circ} + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos \left( {{{90}^\circ} - x} \right) = \sin x{\text{ and }}\sin {30^\circ} = \dfrac{1}{2}\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2 \times \dfrac{1}{2}\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos \left( {\dfrac{{{{10}^\circ} + {{50}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{10}^\circ} - {{50}^\circ}}}{2}} \right)}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos {{30}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2\cos {30^\circ} \\
\]
Using \[\cos {30^\circ} = \dfrac{{\sqrt 3 }}{2}\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2 \times \dfrac{{\sqrt 3 }}{2} = \sqrt 3 \]
Therefore, \[\cot {70^\circ} + 4\cos {70^\circ} = \sqrt 3 \].
Thus, the correct option is B. \[\sqrt 3 \]
Note: The used trigonometric ratio formulae are \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\] and the trigonometric identity formulae are \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\]. So, please do remember the useful formulae in solving the trigonometry problems.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

