
Find the value of \[\cot {70^\circ} + 4\cos {70^\circ}\].
A. \[\sqrt 2 \]
B. \[\sqrt 3 \]
C. \[0\]
D. \[1\]
Answer
600.6k+ views
Hint: Simplify the given expression in terms of sine angles and cosine angles and then into cosine angles to obtain the required answer by the simple trigonometric ratio formulae and trigonometric identities. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given \[\cot {70^\circ} + 4\cos {70^\circ}\]
Using \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \tan {20^\circ} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ}}}{{\cos {{20}^\circ}}} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 4\sin {{20}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[2\sin x\cos x = \sin 2x\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 2\sin {{40}^\circ}}}{{\cos {{20}^\circ}}}\]
Using \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\cos \left( { - x} \right) = \cos \left( { x} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin \left( {\dfrac{{{{20}^\circ} + {{40}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{20}^\circ} - {{40}^\circ}}}{2}} \right) + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin {{30}^\circ}\cos {{10}^\circ} + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos \left( {{{90}^\circ} - x} \right) = \sin x{\text{ and }}\sin {30^\circ} = \dfrac{1}{2}\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2 \times \dfrac{1}{2}\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos \left( {\dfrac{{{{10}^\circ} + {{50}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{10}^\circ} - {{50}^\circ}}}{2}} \right)}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos {{30}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2\cos {30^\circ} \\
\]
Using \[\cos {30^\circ} = \dfrac{{\sqrt 3 }}{2}\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2 \times \dfrac{{\sqrt 3 }}{2} = \sqrt 3 \]
Therefore, \[\cot {70^\circ} + 4\cos {70^\circ} = \sqrt 3 \].
Thus, the correct option is B. \[\sqrt 3 \]
Note: The used trigonometric ratio formulae are \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\] and the trigonometric identity formulae are \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\]. So, please do remember the useful formulae in solving the trigonometry problems.
Complete step-by-step answer:
Given \[\cot {70^\circ} + 4\cos {70^\circ}\]
Using \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \tan {20^\circ} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ}}}{{\cos {{20}^\circ}}} + 4\sin {20^\circ} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 4\sin {{20}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[2\sin x\cos x = \sin 2x\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\sin {{20}^\circ} + 2\sin {{40}^\circ}}}{{\cos {{20}^\circ}}}\]
Using \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\cos \left( { - x} \right) = \cos \left( { x} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin \left( {\dfrac{{{{20}^\circ} + {{40}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{20}^\circ} - {{40}^\circ}}}{2}} \right) + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\sin {{30}^\circ}\cos {{10}^\circ} + \sin {{40}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos \left( {{{90}^\circ} - x} \right) = \sin x{\text{ and }}\sin {30^\circ} = \dfrac{1}{2}\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2 \times \dfrac{1}{2}\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{\cos {{10}^\circ} + \cos {{50}^\circ}}}{{\cos {{20}^\circ}}} \\
\]
Using \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\], we have
\[
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos \left( {\dfrac{{{{10}^\circ} + {{50}^\circ}}}{2}} \right)\cos \left( {\dfrac{{{{10}^\circ} - {{50}^\circ}}}{2}} \right)}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = \dfrac{{2\cos {{30}^\circ}\cos {{20}^\circ}}}{{\cos {{20}^\circ}}} \\
\Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2\cos {30^\circ} \\
\]
Using \[\cos {30^\circ} = \dfrac{{\sqrt 3 }}{2}\], we have
\[ \Rightarrow \cot {70^\circ} + 4\cos {70^\circ} = 2 \times \dfrac{{\sqrt 3 }}{2} = \sqrt 3 \]
Therefore, \[\cot {70^\circ} + 4\cos {70^\circ} = \sqrt 3 \].
Thus, the correct option is B. \[\sqrt 3 \]
Note: The used trigonometric ratio formulae are \[\tan \left( {{{90}^\circ} - x} \right) = \cot x{\text{ and }}\sin \left( {{{90}^\circ} - x} \right) = \cos x\] and the trigonometric identity formulae are \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\] and \[\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\]. So, please do remember the useful formulae in solving the trigonometry problems.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

State BPT theorem and prove it class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

Write the difference between soap and detergent class 10 chemistry CBSE

