
Find the value of \[cos{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }}\].
(a) 1
(b) \[\dfrac{1}{2}\]
(c) \[\dfrac{1}{3}\]
(d) \[\dfrac{1}{4}\]
Answer
580.5k+ views
Hint: To solve this we will use certain trigonometric identities such as \[\cos ({{180}^{\circ }}-\theta )=\cos \theta \], \[\cos ({{180}^{\circ }}+\theta )=-\cos \theta \] and\[\cos ({{270}^{\circ }}+\theta )=\sin \theta \]. And by proper substitution and arrangement of the equations we will determine the value of given expression.
Complete step by step solution:
We are given to find the value of\[cos{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }}\].
To calculate the value of this we will use certain trigonometric identities such as \[\cos ({{180}^{\circ }}-\theta )=\cos \theta \],\[\cos ({{180}^{\circ }}+\theta )=-\cos \theta \] and \[\cos ({{270}^{\circ }}+\theta )=\sin \theta \] and apply them using proper substitution.
We have,
\[cos{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }}\]
Splitting \[{{125}^{\circ }}\] as \[{{180}^{\circ }}-{{55}^{\circ }}\], \[{{204}^{\circ }}\] as \[{{180}^{\circ }}+{{24}^{\circ }}\] and \[{{300}^{\circ }}\] as \[{{270}^{\circ }}+{{30}^{\circ }}\] in the above expression we get,
\[\begin{align}
& cos{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }} \\
& \Rightarrow cos{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }} \\
& =cos{{24}^{\circ }}+cos{{55}^{\circ }}+cos\left( {{180}^{\circ }}-{{55}^{\circ }} \right)+cos\left( {{180}^{\circ }}+{{24}^{\circ }} \right)+cos\left( {{270}^{\circ }}+{{30}^{\circ }} \right) \\
\end{align}\]
Now using the trigonometric identity given as \[\cos ({{180}^{\circ }}-\theta )=\cos \theta \] on \[\cos {{125}^{\circ }}\] and\[\cos ({{180}^{\circ }}+\theta )=-\cos \theta \] on \[\cos {{204}^{\circ }}\] in the above expression we get,
\[\Rightarrow cos\text{ }{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }}=cos{{24}^{\circ }}+cos{{55}^{\circ }}-cos{{55}^{\circ }}-cos{{24}^{\circ }}+sin{{30}^{\circ }}\]
Cancelling the repeated terms on the right-hand side of the above expression we get,
\[\Rightarrow cos\text{ }{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }}=cos{{24}^{\circ }}+cos{{55}^{\circ }}-cos{{55}^{\circ }}-cos{{24}^{\circ }}+sin{{30}^{\circ }}\]
Since we know that $sin{{30}^{\circ }}=\dfrac{1}{2}$ , we can substitute it and we will get RHS as
\[\Rightarrow cos\text{ }{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+\cos {{204}^{\circ }}+\cos {{300}^{\circ }}=\dfrac{1}{2}\]
Therefore, we obtain the value of required expression as \[\dfrac{1}{2}\].
Hence matching the answer from the given options, we get the value of the given expression as \[\dfrac{1}{2}\], which is option (b).
So, option (b) is the correct answer.
Note: The possibility of error in this question can be at the point where we are applying various identities of trigonometric functions to get the required value. Always remember to apply simple and easy to use identities so as to make the substitutions of the expressions easy and understandable.
Complete step by step solution:
We are given to find the value of\[cos{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }}\].
To calculate the value of this we will use certain trigonometric identities such as \[\cos ({{180}^{\circ }}-\theta )=\cos \theta \],\[\cos ({{180}^{\circ }}+\theta )=-\cos \theta \] and \[\cos ({{270}^{\circ }}+\theta )=\sin \theta \] and apply them using proper substitution.
We have,
\[cos{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }}\]
Splitting \[{{125}^{\circ }}\] as \[{{180}^{\circ }}-{{55}^{\circ }}\], \[{{204}^{\circ }}\] as \[{{180}^{\circ }}+{{24}^{\circ }}\] and \[{{300}^{\circ }}\] as \[{{270}^{\circ }}+{{30}^{\circ }}\] in the above expression we get,
\[\begin{align}
& cos{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }} \\
& \Rightarrow cos{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }} \\
& =cos{{24}^{\circ }}+cos{{55}^{\circ }}+cos\left( {{180}^{\circ }}-{{55}^{\circ }} \right)+cos\left( {{180}^{\circ }}+{{24}^{\circ }} \right)+cos\left( {{270}^{\circ }}+{{30}^{\circ }} \right) \\
\end{align}\]
Now using the trigonometric identity given as \[\cos ({{180}^{\circ }}-\theta )=\cos \theta \] on \[\cos {{125}^{\circ }}\] and\[\cos ({{180}^{\circ }}+\theta )=-\cos \theta \] on \[\cos {{204}^{\circ }}\] in the above expression we get,
\[\Rightarrow cos\text{ }{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }}=cos{{24}^{\circ }}+cos{{55}^{\circ }}-cos{{55}^{\circ }}-cos{{24}^{\circ }}+sin{{30}^{\circ }}\]
Cancelling the repeated terms on the right-hand side of the above expression we get,
\[\Rightarrow cos\text{ }{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+cos{{204}^{\circ }}+cos{{300}^{\circ }}=cos{{24}^{\circ }}+cos{{55}^{\circ }}-cos{{55}^{\circ }}-cos{{24}^{\circ }}+sin{{30}^{\circ }}\]
Since we know that $sin{{30}^{\circ }}=\dfrac{1}{2}$ , we can substitute it and we will get RHS as
\[\Rightarrow cos\text{ }{{24}^{\circ }}+cos{{55}^{\circ }}+cos{{125}^{\circ }}+\cos {{204}^{\circ }}+\cos {{300}^{\circ }}=\dfrac{1}{2}\]
Therefore, we obtain the value of required expression as \[\dfrac{1}{2}\].
Hence matching the answer from the given options, we get the value of the given expression as \[\dfrac{1}{2}\], which is option (b).
So, option (b) is the correct answer.
Note: The possibility of error in this question can be at the point where we are applying various identities of trigonometric functions to get the required value. Always remember to apply simple and easy to use identities so as to make the substitutions of the expressions easy and understandable.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

