
Find the value of \[\cos \left( 270{}^\circ +\theta \right)\cos \left( 90{}^\circ +\theta \right)-\cos \left( 270{}^\circ +\theta \right)\cos \theta .\]
Answer
615.9k+ views
Hint: Compute values of $\cos \left( 90{}^\circ +\theta \right)$and $\cos \left( 270{}^\circ +\theta \right)$using the formula;
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$
Then put these values in the expression and compute the answer.
Complete step-by-step answer:
We have to find the values of \[\cos \left( 270{}^\circ +\theta \right)\cos \left( 90{}^\circ +\theta \right)-\cos \left( 270{}^\circ +\theta \right)\cos \theta .\]
For solving the expression, we need to change each term into terms of trigonometric ratios of $\theta \left( i.e.\ \sin \theta \ or\ \cos \theta \right)$.
Using the formula $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$,
$\cos \left( 90+\theta \right)=\cos 90{}^\circ \times \cos \theta -\sin 90{}^\circ \times \sin \theta $
We know $\cos 90{}^\circ =0\ and\ \sin 90{}^\circ =1$
So, $\cos \left( 90+\theta \right)=0-\sin \theta $
$\Rightarrow \cos \left( 90+\theta \right)=-\sin \theta $
Similarly, $\cos \left( 270+\theta \right)=\cos 270\times \cos \theta -\sin 270\times \sin \theta $
We know that $\cos 270{}^\circ =0\ and\ \sin 270{}^\circ =-1$
So, $\cos \left( 270+\theta \right)=0-\left( -1 \right)\times \sin \theta $
$\Rightarrow \cos \left( 270{}^\circ +\theta \right)=\sin \theta $
Now putting these values in the given expression we will get;
$\begin{align}
& \cos \left( 270+\theta \right)\cos \left( 90+\theta \right)-\cos \left( 270+\theta \right)\cos \theta \\
& =\sin \theta \times \left( -\sin \theta \right)-\left( \sin \theta \right)\cos \theta \\
& ={{\sin }^{2}}\theta -\sin \theta \cos \theta \\
\end{align}$
Taking $-\sin \theta $ common, we will get;
$=-\sin \theta \left( \sin \theta +\cos \theta \right)$
Hence, $\cos \left( 270{}^\circ +\theta \right)\cos \left( 90{}^\circ +\theta \right)-\cos \left( 270{}^\circ +\theta \right)\cos \theta =-\sin \theta \left( \cos \theta +\sin \theta \right)$
Note: We should memorize the values of $\cos \left( 90{}^\circ \pm \theta \right),\cos \left( 180{}^\circ \pm \theta \right),\cos \left( 270{}^\circ \pm \theta \right),\sin \left( 90{}^\circ \pm \theta \right),\sin \left( 180{}^\circ \pm \theta \right),\sin \left( 270{}^\circ \pm \theta \right),$
$\tan \left( 90{}^\circ \pm \theta \right),\tan \left( 180{}^\circ \pm \theta \right),\tan \left( 270{}^\circ \pm \theta \right)$ and so on. As these values are commonly used.
Easy trick for remembering these values;
$\begin{align}
& \cos \left( K\pm \theta \right)=\left( \pm \right)\sin \theta \ if\ K=90{}^\circ ,270{}^\circ ,450{}^\circ ,..... \\
& =\left( \pm \right)\cos \theta \ if\ K=180{}^\circ ,360{}^\circ ,540{}^\circ ,..... \\
& \sin \left( K\pm \theta \right)=\left( \pm \right)\sin \theta \ if\ K=180{}^\circ ,360{}^\circ ,540{}^\circ ,..... \\
& =\left( \pm \right)\cos \theta \ if\ K=90{}^\circ ,180{}^\circ ,450{}^\circ ,..... \\
\end{align}$
Sign is decided by checking that in which quadrant angle will line.
If the angel is in;
1st quadrant $\to $all trigonometric ratios will be positive
2nd quadrant $\to \sin \theta \ and\ \cos ec\theta $ will be positive only
3rd quadrant $\to \tan \theta \ and\ \cot \theta $ will be positive only
4th quadrant $\to \cos \theta \ and\ \sec \theta $ will be positive only.
Mnemonics used for memorizing this\[\to \begin{matrix}
\underset{{{1}^{st}}\ quadrant}{\mathop{\underline{ALL}}}\, & \underset{{{2}^{nd}}\ quadrant}{\mathop{\underline{SIN}}}\, & \underset{{{3}^{rd}}\ quadrant}{\mathop{\underline{TAN}}}\, & \underset{{{4}^{th}}\ quadrant}{\mathop{\underline{COS}}}\, \\
\end{matrix}\].
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$
Then put these values in the expression and compute the answer.
Complete step-by-step answer:
We have to find the values of \[\cos \left( 270{}^\circ +\theta \right)\cos \left( 90{}^\circ +\theta \right)-\cos \left( 270{}^\circ +\theta \right)\cos \theta .\]
For solving the expression, we need to change each term into terms of trigonometric ratios of $\theta \left( i.e.\ \sin \theta \ or\ \cos \theta \right)$.
Using the formula $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$,
$\cos \left( 90+\theta \right)=\cos 90{}^\circ \times \cos \theta -\sin 90{}^\circ \times \sin \theta $
We know $\cos 90{}^\circ =0\ and\ \sin 90{}^\circ =1$
So, $\cos \left( 90+\theta \right)=0-\sin \theta $
$\Rightarrow \cos \left( 90+\theta \right)=-\sin \theta $
Similarly, $\cos \left( 270+\theta \right)=\cos 270\times \cos \theta -\sin 270\times \sin \theta $
We know that $\cos 270{}^\circ =0\ and\ \sin 270{}^\circ =-1$
So, $\cos \left( 270+\theta \right)=0-\left( -1 \right)\times \sin \theta $
$\Rightarrow \cos \left( 270{}^\circ +\theta \right)=\sin \theta $
Now putting these values in the given expression we will get;
$\begin{align}
& \cos \left( 270+\theta \right)\cos \left( 90+\theta \right)-\cos \left( 270+\theta \right)\cos \theta \\
& =\sin \theta \times \left( -\sin \theta \right)-\left( \sin \theta \right)\cos \theta \\
& ={{\sin }^{2}}\theta -\sin \theta \cos \theta \\
\end{align}$
Taking $-\sin \theta $ common, we will get;
$=-\sin \theta \left( \sin \theta +\cos \theta \right)$
Hence, $\cos \left( 270{}^\circ +\theta \right)\cos \left( 90{}^\circ +\theta \right)-\cos \left( 270{}^\circ +\theta \right)\cos \theta =-\sin \theta \left( \cos \theta +\sin \theta \right)$
Note: We should memorize the values of $\cos \left( 90{}^\circ \pm \theta \right),\cos \left( 180{}^\circ \pm \theta \right),\cos \left( 270{}^\circ \pm \theta \right),\sin \left( 90{}^\circ \pm \theta \right),\sin \left( 180{}^\circ \pm \theta \right),\sin \left( 270{}^\circ \pm \theta \right),$
$\tan \left( 90{}^\circ \pm \theta \right),\tan \left( 180{}^\circ \pm \theta \right),\tan \left( 270{}^\circ \pm \theta \right)$ and so on. As these values are commonly used.
Easy trick for remembering these values;
$\begin{align}
& \cos \left( K\pm \theta \right)=\left( \pm \right)\sin \theta \ if\ K=90{}^\circ ,270{}^\circ ,450{}^\circ ,..... \\
& =\left( \pm \right)\cos \theta \ if\ K=180{}^\circ ,360{}^\circ ,540{}^\circ ,..... \\
& \sin \left( K\pm \theta \right)=\left( \pm \right)\sin \theta \ if\ K=180{}^\circ ,360{}^\circ ,540{}^\circ ,..... \\
& =\left( \pm \right)\cos \theta \ if\ K=90{}^\circ ,180{}^\circ ,450{}^\circ ,..... \\
\end{align}$
Sign is decided by checking that in which quadrant angle will line.
If the angel is in;
1st quadrant $\to $all trigonometric ratios will be positive
2nd quadrant $\to \sin \theta \ and\ \cos ec\theta $ will be positive only
3rd quadrant $\to \tan \theta \ and\ \cot \theta $ will be positive only
4th quadrant $\to \cos \theta \ and\ \sec \theta $ will be positive only.
Mnemonics used for memorizing this\[\to \begin{matrix}
\underset{{{1}^{st}}\ quadrant}{\mathop{\underline{ALL}}}\, & \underset{{{2}^{nd}}\ quadrant}{\mathop{\underline{SIN}}}\, & \underset{{{3}^{rd}}\ quadrant}{\mathop{\underline{TAN}}}\, & \underset{{{4}^{th}}\ quadrant}{\mathop{\underline{COS}}}\, \\
\end{matrix}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

