
Find the value of $\cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}$.
Answer
566.1k+ views
Hint: We solve this question by first converting the value $\cos {{175}^{\circ }}$ into smaller angle using the formula $\cos \left( {{180}^{\circ }}-A \right)=-\cos A$. Then we substitute it in the given expression. Then we consider the value of $\cos {{65}^{\circ }}+\cos {{175}^{\circ }}$ and substitute the above obtained value of $\cos {{175}^{\circ }}$. Then we use the formula $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$ and simplify it. Then we substitute the value $\sin \left( {{30}^{\circ }} \right)=\dfrac{1}{2}$ in it and then we use the formula $\sin \left( {{90}^{\circ }}-A \right)=\cos A$ and find the value in terms of cosine. Then we substitute this value in the given expression and solve it to find the required value.
Complete step-by-step solution
We are asked to find the value of $\cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}$.
First let us consider the value of $\cos {{175}^{\circ }}$.
Now let us consider the formula,
$\cos \left( {{180}^{\circ }}-A \right)=-\cos A$
Using this formula, we can write $\cos {{175}^{\circ }}$ as,
$\begin{align}
& \Rightarrow \cos {{175}^{\circ }}=\cos \left( {{180}^{\circ }}-{{5}^{\circ }} \right) \\
& \Rightarrow \cos {{175}^{\circ }}=-\cos {{5}^{\circ }} \\
\end{align}$
So, substituting this in the given expression we can write it as,
$\Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{55}^{\circ }}+\cos {{65}^{\circ }}-\cos {{5}^{\circ }}.............\left( 1 \right)$
Now let us consider the trigonometric expression,
$\Rightarrow \cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{65}^{\circ }}-\cos {{5}^{\circ }}$
Now let us consider the formula,
$\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
So, using this formula we can write the above expression as,
$\begin{align}
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( \dfrac{{{65}^{\circ }}+{{5}^{\circ }}}{2} \right)\sin \left( \dfrac{{{65}^{\circ }}-{{5}^{\circ }}}{2} \right) \\
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( \dfrac{{{70}^{\circ }}}{2} \right)\sin \left( \dfrac{{{60}^{\circ }}}{2} \right) \\
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( {{35}^{\circ }} \right)\sin \left( {{30}^{\circ }} \right) \\
\end{align}$
Now let us substitute the value of $\sin \left( {{30}^{\circ }} \right)=\dfrac{1}{2}$ in the above equation. Then we get,
$\begin{align}
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( {{35}^{\circ }} \right)\sin \left( {{30}^{\circ }} \right) \\
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( {{35}^{\circ }} \right)\times \dfrac{1}{2} \\
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-\sin {{35}^{\circ }} \\
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-\sin \left( {{90}^{\circ }}-{{55}^{\circ }} \right) \\
\end{align}$
Now let us consider the formula,
$\sin \left( {{90}^{\circ }}-A \right)=\cos A$
Using it we can write the above equation as,
$\Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-\cos {{55}^{\circ }}............\left( 2 \right)$
Substituting the value obtained in equation (2) in the equation (1) we get,
$\begin{align}
& \Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{55}^{\circ }}+\cos {{65}^{\circ }}-\cos {{5}^{\circ }} \\
& \Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{55}^{\circ }}-\cos {{55}^{\circ }} \\
& \Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=0 \\
\end{align}$
So, we get the value of $\cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}$ as 0. Hence the answer is 0.
Note: The common mistakes one makes while solving this question is one might take the formulas wrongly as, $\cos \left( {{180}^{\circ }}-A \right)=\cos A$ but it should have the negative sign and might write the formula as $\cos A-\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ by confusing with the formula $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$.
Complete step-by-step solution
We are asked to find the value of $\cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}$.
First let us consider the value of $\cos {{175}^{\circ }}$.
Now let us consider the formula,
$\cos \left( {{180}^{\circ }}-A \right)=-\cos A$
Using this formula, we can write $\cos {{175}^{\circ }}$ as,
$\begin{align}
& \Rightarrow \cos {{175}^{\circ }}=\cos \left( {{180}^{\circ }}-{{5}^{\circ }} \right) \\
& \Rightarrow \cos {{175}^{\circ }}=-\cos {{5}^{\circ }} \\
\end{align}$
So, substituting this in the given expression we can write it as,
$\Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{55}^{\circ }}+\cos {{65}^{\circ }}-\cos {{5}^{\circ }}.............\left( 1 \right)$
Now let us consider the trigonometric expression,
$\Rightarrow \cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{65}^{\circ }}-\cos {{5}^{\circ }}$
Now let us consider the formula,
$\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
So, using this formula we can write the above expression as,
$\begin{align}
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( \dfrac{{{65}^{\circ }}+{{5}^{\circ }}}{2} \right)\sin \left( \dfrac{{{65}^{\circ }}-{{5}^{\circ }}}{2} \right) \\
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( \dfrac{{{70}^{\circ }}}{2} \right)\sin \left( \dfrac{{{60}^{\circ }}}{2} \right) \\
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( {{35}^{\circ }} \right)\sin \left( {{30}^{\circ }} \right) \\
\end{align}$
Now let us substitute the value of $\sin \left( {{30}^{\circ }} \right)=\dfrac{1}{2}$ in the above equation. Then we get,
$\begin{align}
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( {{35}^{\circ }} \right)\sin \left( {{30}^{\circ }} \right) \\
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( {{35}^{\circ }} \right)\times \dfrac{1}{2} \\
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-\sin {{35}^{\circ }} \\
& \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-\sin \left( {{90}^{\circ }}-{{55}^{\circ }} \right) \\
\end{align}$
Now let us consider the formula,
$\sin \left( {{90}^{\circ }}-A \right)=\cos A$
Using it we can write the above equation as,
$\Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-\cos {{55}^{\circ }}............\left( 2 \right)$
Substituting the value obtained in equation (2) in the equation (1) we get,
$\begin{align}
& \Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{55}^{\circ }}+\cos {{65}^{\circ }}-\cos {{5}^{\circ }} \\
& \Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{55}^{\circ }}-\cos {{55}^{\circ }} \\
& \Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=0 \\
\end{align}$
So, we get the value of $\cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}$ as 0. Hence the answer is 0.
Note: The common mistakes one makes while solving this question is one might take the formulas wrongly as, $\cos \left( {{180}^{\circ }}-A \right)=\cos A$ but it should have the negative sign and might write the formula as $\cos A-\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ by confusing with the formula $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

