Answer
Verified
365.1k+ views
Hint:We explain the process of finding values for associated angles. We find the rotation and the position of the angle for $\cos 480^{\circ},\sin 150^{\circ},\sin 600^{\circ},\cos 390^{\circ}$. We explain the changes that are required for that angle. Depending on those things we find the solution.
Complete step by step answer:
We need to find the ratio values for $\cos 480^{\circ},\sin 150^{\circ},\sin 600^{\circ},\cos 390^{\circ}$. For general form, we need to convert the value of x into the closest multiple of $\dfrac{\pi }{2}$ and add or subtract a certain value $\alpha $ from that multiple of $\dfrac{\pi }{2}$ to make it equal to $x$.
Let’s assume $x=k\times \dfrac{\pi }{2}+\alpha $, $k\in \mathbb{Z}$. Here we took the addition of $\alpha $. We also need to remember that $\left| \alpha \right|\le \dfrac{\pi }{2}$. Now we take the value of $k$. For ratio cos, if it’s even then keep the ratio as cos and if it’s odd then the ratio changes to sin ratio from cos. For ratio sin, if it’s even then keep the ratio as sin and if it’s odd then the ratio changes to cos ratio from sin.
Then we find the position of the given angle as a quadrant value measured in counter clockwise movement from the origin and the positive side of X-axis. If for ratio cos the angel falls in the first or fourth quadrant then the sign remains positive but if it falls in the second or third quadrant then the sign becomes negative. For ratios sin the angel falls in the first or second quadrant then the sign remains positive but if it falls in the third or fourth quadrant then the sign becomes negative. The final form becomes,
$\cos 480^{\circ}=\cos \left( 5\times \dfrac{\pi }{2}+30 \right)=-\sin \left( 30 \right)=-\dfrac{1}{2}$
$\Rightarrow \sin 150^{\circ}=\sin \left( 1\times \dfrac{\pi }{2}+60 \right)=\cos \left( 60 \right)=\dfrac{1}{2}$
$\Rightarrow \sin 600^{\circ}=\sin \left( 6\times \dfrac{\pi }{2}+60 \right)=-\sin \left( 60 \right)=-\dfrac{\sqrt{3}}{2}$
$\Rightarrow \cos 390^{\circ}=\cos \left( 4\times \dfrac{\pi }{2}+30 \right)=\cos \left( 30 \right)=\dfrac{\sqrt{3}}{2}$
\[\therefore \cos 480^{\circ}\sin 150^{\circ}+\sin 600^{\circ}\cos 390^{\circ}=\left( -\dfrac{1}{2} \right)\left( \dfrac{1}{2} \right)+\left( -\dfrac{\sqrt{3}}{2} \right)\left( \dfrac{\sqrt{3}}{2} \right)=-1\]
Therefore, the value of \[\cos 480^{\circ}\sin 150^{\circ}+\sin 600^{\circ}\cos 390^{\circ}\] is \[-1\]. The correct option is D.
Note:We need to remember that the easiest way to avoid the change of ratio thing is to form the multiple of $\pi $ instead of $\dfrac{\pi }{2}$. It makes the multiplied number always even. In that case we don’t have to change the ratio. If $x=k\times \pi +\alpha =2k\times \dfrac{\pi }{2}+\alpha $. Value of $2k$ is always even.
Complete step by step answer:
We need to find the ratio values for $\cos 480^{\circ},\sin 150^{\circ},\sin 600^{\circ},\cos 390^{\circ}$. For general form, we need to convert the value of x into the closest multiple of $\dfrac{\pi }{2}$ and add or subtract a certain value $\alpha $ from that multiple of $\dfrac{\pi }{2}$ to make it equal to $x$.
Let’s assume $x=k\times \dfrac{\pi }{2}+\alpha $, $k\in \mathbb{Z}$. Here we took the addition of $\alpha $. We also need to remember that $\left| \alpha \right|\le \dfrac{\pi }{2}$. Now we take the value of $k$. For ratio cos, if it’s even then keep the ratio as cos and if it’s odd then the ratio changes to sin ratio from cos. For ratio sin, if it’s even then keep the ratio as sin and if it’s odd then the ratio changes to cos ratio from sin.
Then we find the position of the given angle as a quadrant value measured in counter clockwise movement from the origin and the positive side of X-axis. If for ratio cos the angel falls in the first or fourth quadrant then the sign remains positive but if it falls in the second or third quadrant then the sign becomes negative. For ratios sin the angel falls in the first or second quadrant then the sign remains positive but if it falls in the third or fourth quadrant then the sign becomes negative. The final form becomes,
$\cos 480^{\circ}=\cos \left( 5\times \dfrac{\pi }{2}+30 \right)=-\sin \left( 30 \right)=-\dfrac{1}{2}$
$\Rightarrow \sin 150^{\circ}=\sin \left( 1\times \dfrac{\pi }{2}+60 \right)=\cos \left( 60 \right)=\dfrac{1}{2}$
$\Rightarrow \sin 600^{\circ}=\sin \left( 6\times \dfrac{\pi }{2}+60 \right)=-\sin \left( 60 \right)=-\dfrac{\sqrt{3}}{2}$
$\Rightarrow \cos 390^{\circ}=\cos \left( 4\times \dfrac{\pi }{2}+30 \right)=\cos \left( 30 \right)=\dfrac{\sqrt{3}}{2}$
\[\therefore \cos 480^{\circ}\sin 150^{\circ}+\sin 600^{\circ}\cos 390^{\circ}=\left( -\dfrac{1}{2} \right)\left( \dfrac{1}{2} \right)+\left( -\dfrac{\sqrt{3}}{2} \right)\left( \dfrac{\sqrt{3}}{2} \right)=-1\]
Therefore, the value of \[\cos 480^{\circ}\sin 150^{\circ}+\sin 600^{\circ}\cos 390^{\circ}\] is \[-1\]. The correct option is D.
Note:We need to remember that the easiest way to avoid the change of ratio thing is to form the multiple of $\pi $ instead of $\dfrac{\pi }{2}$. It makes the multiplied number always even. In that case we don’t have to change the ratio. If $x=k\times \pi +\alpha =2k\times \dfrac{\pi }{2}+\alpha $. Value of $2k$ is always even.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell