
Find the value of a if $\sin {{12}^{\circ }}.\sin {{48}^{\circ }}.\sin {{54}^{\circ }}=\dfrac{1}{a}$.
Answer
558.6k+ views
Hint: We are going to use the trigonometric identities like the transformation of sum and products of sin and cos. We also use quadrant rules for trigonometry. We try to form the identities of the same category and find the value of a.
Complete step-by-step solution
We try to form the trigonometric identity of $2\sin A.\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)$.
From the given equation of $\sin {{12}^{\circ }}.\sin {{48}^{\circ }}.\sin {{54}^{\circ }}=\dfrac{1}{a}$, we take $A={{12}^{\circ }},B={{48}^{\circ }}$.
So, the left-hand side becomes \[\sin {{12}^{\circ }}.\sin {{48}^{\circ }}.\sin {{54}^{\circ }}=\dfrac{1}{2}\left( 2\sin {{12}^{\circ }}.\sin {{48}^{\circ }} \right).\sin {{54}^{\circ }}\].
We convert \[2\sin {{12}^{\circ }}.\sin {{48}^{\circ }}\] as $2\sin {{12}^{\circ }}.\sin {{48}^{\circ }}=\cos \left( {{12}^{\circ }}-{{48}^{\circ }} \right)-\cos \left( {{12}^{\circ }}+{{48}^{\circ }} \right)$.
The equation becomes $2\sin {{12}^{\circ }}.\sin {{48}^{\circ }}=\cos \left( -{{36}^{\circ }} \right)-\cos \left( {{60}^{\circ }} \right)=\cos {{36}^{\circ }}-\dfrac{1}{2}$.
$\begin{align}
& \sin {{12}^{\circ }}.\sin {{48}^{\circ }}.\sin {{54}^{\circ }} \\
& =\dfrac{1}{2}\left( \cos {{36}^{\circ }}-\dfrac{1}{2} \right).\sin {{54}^{\circ }} \\
& =\dfrac{1}{4}\left( 2\sin {{54}^{\circ }}.\cos {{36}^{\circ }}-\sin {{54}^{\circ }} \right) \\
\end{align}$
We found a new equation where we can apply a new trigonometrical identity of $2\sin A.\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$.
We take $A={{54}^{\circ }},B={{36}^{\circ }}$. We get \[2\sin {{54}^{\circ }}.\cos {{36}^{\circ }}=\sin \left( {{54}^{\circ }}+{{36}^{\circ }} \right)+\sin \left( {{54}^{\circ }}-{{36}^{\circ }} \right)=\sin {{90}^{\circ }}+\sin {{18}^{\circ }}=1+\sin {{18}^{\circ }}\].
We also have the trigonometric identity of \[\sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha \]. We apply that on $\sin {{54}^{\circ }}$ and get \[\sin {{54}^{\circ }}=\sin \left( {{90}^{\circ }}-{{36}^{\circ }} \right)=\cos {{36}^{\circ }}\]
So, the equation becomes
\[\begin{align}
& \dfrac{1}{4}\left( 2\sin {{54}^{\circ }}.\cos {{36}^{\circ }}-\sin {{54}^{\circ }} \right) \\
& =\dfrac{1}{4}\left( 1+\sin {{18}^{\circ }}-\sin {{54}^{\circ }} \right) \\
& =\dfrac{1}{4}\left[ 1-\left( \sin {{54}^{\circ }}-\sin {{18}^{\circ }} \right) \right] \\
\end{align}\]
Now we try to form the trigonometric identity of \[\sin A-\sin B=2\cos \dfrac{\left( A+B \right)}{2}\sin \dfrac{\left( A-B \right)}{2}\].
\[\begin{align}
& \dfrac{1}{4}\left[ 1-\left( \sin {{54}^{\circ }}-\sin {{18}^{\circ }} \right) \right] \\
& =\dfrac{1}{4}\left[ 1-\left( 2\cos \dfrac{\left( {{54}^{\circ }}+{{18}^{\circ }} \right)}{2}\sin \dfrac{\left( {{54}^{\circ }}-{{18}^{\circ }} \right)}{2} \right) \right] \\
& =\dfrac{1}{4}\left[ 1-2\cos {{36}^{\circ }}\sin {{18}^{\circ }} \right] \\
\end{align}\]
Now we try to multiply \[\cos {{18}^{\circ }}\] to the term \[2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\]. We have the trigonometric identity of \[2\sin A\cos A=\sin 2A\].
We get \[2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\cos {{18}^{\circ }}=\cos {{36}^{\circ }}\left( 2\sin {{18}^{\circ }}\cos {{18}^{\circ }} \right)=\cos {{36}^{\circ }}\sin {{36}^{\circ }}\].
We apply the same process one more time and get
\[\begin{align}
& \cos {{36}^{\circ }}\sin {{36}^{\circ }} \\
& =\dfrac{1}{2}\left( 2\sin {{36}^{\circ }}\cos {{36}^{\circ }} \right) \\
& =\dfrac{1}{2}\left( \sin {{72}^{\circ }} \right) \\
\end{align}\]
We again apply \[\sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha \] for \[\sin {{72}^{\circ }}\] and get \[\sin {{72}^{\circ }}=\sin \left( {{90}^{\circ }}-{{18}^{\circ }} \right)=\cos {{18}^{\circ }}\].
We can’t just multiply \[\cos {{18}^{\circ }}\] to the term \[2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\] without dividing with it also.
So, the conversion of \[2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\] becomes
\[2\cos {{36}^{\circ }}\sin {{18}^{\circ }}=\dfrac{2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\cos {{18}^{\circ }}}{\cos {{18}^{\circ }}}=\dfrac{\dfrac{1}{2}\left( \sin {{72}^{\circ }} \right)}{\cos {{18}^{\circ }}}=\dfrac{\dfrac{1}{2}\left( \cos {{18}^{\circ }} \right)}{\cos {{18}^{\circ }}}=\dfrac{1}{2}\].
Now we replace the value in \[\dfrac{1}{4}\left[ 1-2\cos {{36}^{\circ }}\sin {{18}^{\circ }} \right]\].
\[\dfrac{1}{4}\left[ 1-2\cos {{36}^{\circ }}\sin {{18}^{\circ }} \right]=\dfrac{1}{4}\left[ 1-\dfrac{1}{2} \right]=\dfrac{1}{4}\times \dfrac{1}{2}=\dfrac{1}{8}\].
So, the value of $\sin {{12}^{\circ }}.\sin {{48}^{\circ }}.\sin {{54}^{\circ }}$ is $\dfrac{1}{8}$. Value of a is 8.
Note: The solution can also be found by placing the values from the known angles. We find the value for angle ${{36}^{\circ }}$ and find the solution in much smaller steps. But the problem will be that the angle ${{36}^{\circ }}$ is not considered as the general value. So, we can’t always get away with using direct values.
Complete step-by-step solution
We try to form the trigonometric identity of $2\sin A.\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)$.
From the given equation of $\sin {{12}^{\circ }}.\sin {{48}^{\circ }}.\sin {{54}^{\circ }}=\dfrac{1}{a}$, we take $A={{12}^{\circ }},B={{48}^{\circ }}$.
So, the left-hand side becomes \[\sin {{12}^{\circ }}.\sin {{48}^{\circ }}.\sin {{54}^{\circ }}=\dfrac{1}{2}\left( 2\sin {{12}^{\circ }}.\sin {{48}^{\circ }} \right).\sin {{54}^{\circ }}\].
We convert \[2\sin {{12}^{\circ }}.\sin {{48}^{\circ }}\] as $2\sin {{12}^{\circ }}.\sin {{48}^{\circ }}=\cos \left( {{12}^{\circ }}-{{48}^{\circ }} \right)-\cos \left( {{12}^{\circ }}+{{48}^{\circ }} \right)$.
The equation becomes $2\sin {{12}^{\circ }}.\sin {{48}^{\circ }}=\cos \left( -{{36}^{\circ }} \right)-\cos \left( {{60}^{\circ }} \right)=\cos {{36}^{\circ }}-\dfrac{1}{2}$.
$\begin{align}
& \sin {{12}^{\circ }}.\sin {{48}^{\circ }}.\sin {{54}^{\circ }} \\
& =\dfrac{1}{2}\left( \cos {{36}^{\circ }}-\dfrac{1}{2} \right).\sin {{54}^{\circ }} \\
& =\dfrac{1}{4}\left( 2\sin {{54}^{\circ }}.\cos {{36}^{\circ }}-\sin {{54}^{\circ }} \right) \\
\end{align}$
We found a new equation where we can apply a new trigonometrical identity of $2\sin A.\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$.
We take $A={{54}^{\circ }},B={{36}^{\circ }}$. We get \[2\sin {{54}^{\circ }}.\cos {{36}^{\circ }}=\sin \left( {{54}^{\circ }}+{{36}^{\circ }} \right)+\sin \left( {{54}^{\circ }}-{{36}^{\circ }} \right)=\sin {{90}^{\circ }}+\sin {{18}^{\circ }}=1+\sin {{18}^{\circ }}\].
We also have the trigonometric identity of \[\sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha \]. We apply that on $\sin {{54}^{\circ }}$ and get \[\sin {{54}^{\circ }}=\sin \left( {{90}^{\circ }}-{{36}^{\circ }} \right)=\cos {{36}^{\circ }}\]
So, the equation becomes
\[\begin{align}
& \dfrac{1}{4}\left( 2\sin {{54}^{\circ }}.\cos {{36}^{\circ }}-\sin {{54}^{\circ }} \right) \\
& =\dfrac{1}{4}\left( 1+\sin {{18}^{\circ }}-\sin {{54}^{\circ }} \right) \\
& =\dfrac{1}{4}\left[ 1-\left( \sin {{54}^{\circ }}-\sin {{18}^{\circ }} \right) \right] \\
\end{align}\]
Now we try to form the trigonometric identity of \[\sin A-\sin B=2\cos \dfrac{\left( A+B \right)}{2}\sin \dfrac{\left( A-B \right)}{2}\].
\[\begin{align}
& \dfrac{1}{4}\left[ 1-\left( \sin {{54}^{\circ }}-\sin {{18}^{\circ }} \right) \right] \\
& =\dfrac{1}{4}\left[ 1-\left( 2\cos \dfrac{\left( {{54}^{\circ }}+{{18}^{\circ }} \right)}{2}\sin \dfrac{\left( {{54}^{\circ }}-{{18}^{\circ }} \right)}{2} \right) \right] \\
& =\dfrac{1}{4}\left[ 1-2\cos {{36}^{\circ }}\sin {{18}^{\circ }} \right] \\
\end{align}\]
Now we try to multiply \[\cos {{18}^{\circ }}\] to the term \[2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\]. We have the trigonometric identity of \[2\sin A\cos A=\sin 2A\].
We get \[2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\cos {{18}^{\circ }}=\cos {{36}^{\circ }}\left( 2\sin {{18}^{\circ }}\cos {{18}^{\circ }} \right)=\cos {{36}^{\circ }}\sin {{36}^{\circ }}\].
We apply the same process one more time and get
\[\begin{align}
& \cos {{36}^{\circ }}\sin {{36}^{\circ }} \\
& =\dfrac{1}{2}\left( 2\sin {{36}^{\circ }}\cos {{36}^{\circ }} \right) \\
& =\dfrac{1}{2}\left( \sin {{72}^{\circ }} \right) \\
\end{align}\]
We again apply \[\sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha \] for \[\sin {{72}^{\circ }}\] and get \[\sin {{72}^{\circ }}=\sin \left( {{90}^{\circ }}-{{18}^{\circ }} \right)=\cos {{18}^{\circ }}\].
We can’t just multiply \[\cos {{18}^{\circ }}\] to the term \[2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\] without dividing with it also.
So, the conversion of \[2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\] becomes
\[2\cos {{36}^{\circ }}\sin {{18}^{\circ }}=\dfrac{2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\cos {{18}^{\circ }}}{\cos {{18}^{\circ }}}=\dfrac{\dfrac{1}{2}\left( \sin {{72}^{\circ }} \right)}{\cos {{18}^{\circ }}}=\dfrac{\dfrac{1}{2}\left( \cos {{18}^{\circ }} \right)}{\cos {{18}^{\circ }}}=\dfrac{1}{2}\].
Now we replace the value in \[\dfrac{1}{4}\left[ 1-2\cos {{36}^{\circ }}\sin {{18}^{\circ }} \right]\].
\[\dfrac{1}{4}\left[ 1-2\cos {{36}^{\circ }}\sin {{18}^{\circ }} \right]=\dfrac{1}{4}\left[ 1-\dfrac{1}{2} \right]=\dfrac{1}{4}\times \dfrac{1}{2}=\dfrac{1}{8}\].
So, the value of $\sin {{12}^{\circ }}.\sin {{48}^{\circ }}.\sin {{54}^{\circ }}$ is $\dfrac{1}{8}$. Value of a is 8.
Note: The solution can also be found by placing the values from the known angles. We find the value for angle ${{36}^{\circ }}$ and find the solution in much smaller steps. But the problem will be that the angle ${{36}^{\circ }}$ is not considered as the general value. So, we can’t always get away with using direct values.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

