
Find the value of a for which the function $$f\left( x\right) =ax^{3}-3\left( a+2\right) x^{2}+9\left( a+2\right) x-1$$ is decreasing for all $$x\in \mathbf{R}$$.
Answer
583.5k+ views
Hint: In this question it is given that we have to find the value of a for which the function $$f\left( x\right) =ax^{3}-3\left( a+2\right) x^{2}+9\left( a+2\right) x-1$$ is decreasing for all $$x\in \mathbf{R}$$.
So to find the solution we need to know that if a function is decreasing in any domain then the first derivative of that function in that domain is always greater than zero, i.e, $$f^{\prime }\left( x\right) < 0$$.
Complete step-by-step answer:
Given function,
$$f\left( x\right) =ax^{3}-3\left( a+2\right) x^{2}+9\left( a+2\right) x-1$$..........(1)
Now differentiating both side w.r.t ‘x’ we get,
$$\dfrac{d}{dx} f\left( x\right) =\dfrac{d}{dx} \left\{ ax^{3}-3\left( a+2\right) x^{2}+9\left( a+2\right) x-1\right\} $$
$$\Rightarrow f^{\prime }\left( x\right) =a\dfrac{d}{dx} \left( x^{3}\right) -3\left( a+2\right) \dfrac{d}{dx} \left( x^{2}\right) +9\left( a+2\right) \dfrac{d}{dx} \left( x\right) -\dfrac{d}{dx} \left( 1\right) $$
[$$\because \dfrac{d}{dx} f\left( x\right) =f^{\prime }\left( x\right) $$]
Now as we know that $$\dfrac{d}{dx} \left( x^{n}\right) =nx^{n-1}$$,
So we can write,
$$f^{\prime }\left( x\right) =a\times 3x^{2}-3\left( a+2\right) \times 2x+9\left( a+2\right) \times 1-0$$
$$=3ax^{2}-6\left( a+2\right) x+9\left( a+2\right) $$........(2)
Here it is given $$x\in \mathbf{R}$$, i.e, $$-\infty < x <\infty$$
Now since the function is decreasing therefore we can write,
$$f^{\prime }\left( x\right) <0$$
$$\Rightarrow 3ax^{2}-6\left( a+2\right) x+9\left( a+2\right)
<0$$.......(3)
So for this we have to know that if any quadratic equation is less than zero, then the coefficient of x is less than zero also discriminant (D) is also less than zero,
i.e, if $$px^{2}+qx+r < 0$$ then p < 0 and D < 0.
Where D = $$q^{{}2}-4pr$$.
Now if we compare the equation (3) with $$px^{2}+qx+r<0$$, then we can write,
p = 3a, q = -6(a+2), r = 9(a+2)
Therefore by the above formula,
p < 0
$$\Rightarrow 3a < 0$$
$$\Rightarrow a < 0$$
Therefore, $$a\in \left( -\infty ,0\right) $$......(4)
And,
$$q^{2}-4pr<\ 0$$
$$\Rightarrow \left\{ -6\left( a+2\right) \right\}^{2} -4\times 3a\times 9\left( a+2\right) <\ 0$$
$$\Rightarrow 36\left( a+2\right)^{2} -108a\left( a+2\right) <\ 0$$
$$\Rightarrow \left( a+2\right) \{ 36\left( a+2\right) -108a\} <\ 0$$
$$\Rightarrow \left( a+2\right) \{ 36a+72-108a\} <\ 0$$
$$\Rightarrow \left( a+2\right) (72-72a)<\ 0$$
$$\Rightarrow \left( a+2\right) \times 72\left( 1-a\right) <\ 0$$
$$\Rightarrow 72\left( a+2\right) \left( 1-a\right) <\ 0$$
$$\Rightarrow -72\left( a+2\right) \left( a-1\right) <\ 0$$
$$\Rightarrow -\left( a+2\right) \left( a-1\right) <\ 0$$
$$\Rightarrow \left( a+2\right) \left( a-1\right) >\ 0$$ [if -a < b, then a > -b]
$$\text{Either} \ \left( a+2\right) >0\ \text{and} \ \left( a-1\right) >0$$
$$\therefore a>-2\ \text{and} \ a>1$$
Which gives, $$a\in \left( 1,\infty \right) $$
$$\text{or} \ \left( a+2\right) <0\ \text{and} \ \left( a-1\right) <0$$
$$\therefore a<-2\ \text{and} \ a<1$$
Which implies, $$a\in \left( -\infty ,-2\right) $$
Now since in between the conditions or is given so we have to take union, i,e, $$a\in \left( -\infty ,-2\right) \cup \left( 1,\infty \right) $$..........(5)
Now from we have to take intersection of a from the conditions (4) and (5),
Therefore we get,
$$a\in \left( -\infty ,0\right) \cap \left\{ \left( -\infty ,-2\right) \cup \left( 1,\infty \right) \right\} $$
Which implies, $$a\in \left( -\infty ,-2\right) $$,
Which gives the all possible values of a for which the function is decreasing.
Note: While solving this type of question you need to know that if you have given ab > 0, then from here two cases arise and the cases are either, a > 0 & b > 0 or a < 0 & b < 0., i,e, multiplication of two factors is positive if and only if they both positive or they both negative.
So to find the solution we need to know that if a function is decreasing in any domain then the first derivative of that function in that domain is always greater than zero, i.e, $$f^{\prime }\left( x\right) < 0$$.
Complete step-by-step answer:
Given function,
$$f\left( x\right) =ax^{3}-3\left( a+2\right) x^{2}+9\left( a+2\right) x-1$$..........(1)
Now differentiating both side w.r.t ‘x’ we get,
$$\dfrac{d}{dx} f\left( x\right) =\dfrac{d}{dx} \left\{ ax^{3}-3\left( a+2\right) x^{2}+9\left( a+2\right) x-1\right\} $$
$$\Rightarrow f^{\prime }\left( x\right) =a\dfrac{d}{dx} \left( x^{3}\right) -3\left( a+2\right) \dfrac{d}{dx} \left( x^{2}\right) +9\left( a+2\right) \dfrac{d}{dx} \left( x\right) -\dfrac{d}{dx} \left( 1\right) $$
[$$\because \dfrac{d}{dx} f\left( x\right) =f^{\prime }\left( x\right) $$]
Now as we know that $$\dfrac{d}{dx} \left( x^{n}\right) =nx^{n-1}$$,
So we can write,
$$f^{\prime }\left( x\right) =a\times 3x^{2}-3\left( a+2\right) \times 2x+9\left( a+2\right) \times 1-0$$
$$=3ax^{2}-6\left( a+2\right) x+9\left( a+2\right) $$........(2)
Here it is given $$x\in \mathbf{R}$$, i.e, $$-\infty < x <\infty$$
Now since the function is decreasing therefore we can write,
$$f^{\prime }\left( x\right) <0$$
$$\Rightarrow 3ax^{2}-6\left( a+2\right) x+9\left( a+2\right)
<0$$.......(3)
So for this we have to know that if any quadratic equation is less than zero, then the coefficient of x is less than zero also discriminant (D) is also less than zero,
i.e, if $$px^{2}+qx+r < 0$$ then p < 0 and D < 0.
Where D = $$q^{{}2}-4pr$$.
Now if we compare the equation (3) with $$px^{2}+qx+r<0$$, then we can write,
p = 3a, q = -6(a+2), r = 9(a+2)
Therefore by the above formula,
p < 0
$$\Rightarrow 3a < 0$$
$$\Rightarrow a < 0$$
Therefore, $$a\in \left( -\infty ,0\right) $$......(4)
And,
$$q^{2}-4pr<\ 0$$
$$\Rightarrow \left\{ -6\left( a+2\right) \right\}^{2} -4\times 3a\times 9\left( a+2\right) <\ 0$$
$$\Rightarrow 36\left( a+2\right)^{2} -108a\left( a+2\right) <\ 0$$
$$\Rightarrow \left( a+2\right) \{ 36\left( a+2\right) -108a\} <\ 0$$
$$\Rightarrow \left( a+2\right) \{ 36a+72-108a\} <\ 0$$
$$\Rightarrow \left( a+2\right) (72-72a)<\ 0$$
$$\Rightarrow \left( a+2\right) \times 72\left( 1-a\right) <\ 0$$
$$\Rightarrow 72\left( a+2\right) \left( 1-a\right) <\ 0$$
$$\Rightarrow -72\left( a+2\right) \left( a-1\right) <\ 0$$
$$\Rightarrow -\left( a+2\right) \left( a-1\right) <\ 0$$
$$\Rightarrow \left( a+2\right) \left( a-1\right) >\ 0$$ [if -a < b, then a > -b]
$$\text{Either} \ \left( a+2\right) >0\ \text{and} \ \left( a-1\right) >0$$
$$\therefore a>-2\ \text{and} \ a>1$$
Which gives, $$a\in \left( 1,\infty \right) $$
$$\text{or} \ \left( a+2\right) <0\ \text{and} \ \left( a-1\right) <0$$
$$\therefore a<-2\ \text{and} \ a<1$$
Which implies, $$a\in \left( -\infty ,-2\right) $$
Now since in between the conditions or is given so we have to take union, i,e, $$a\in \left( -\infty ,-2\right) \cup \left( 1,\infty \right) $$..........(5)
Now from we have to take intersection of a from the conditions (4) and (5),
Therefore we get,
$$a\in \left( -\infty ,0\right) \cap \left\{ \left( -\infty ,-2\right) \cup \left( 1,\infty \right) \right\} $$
Which implies, $$a\in \left( -\infty ,-2\right) $$,
Which gives the all possible values of a for which the function is decreasing.
Note: While solving this type of question you need to know that if you have given ab > 0, then from here two cases arise and the cases are either, a > 0 & b > 0 or a < 0 & b < 0., i,e, multiplication of two factors is positive if and only if they both positive or they both negative.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

