
Find the value of a & b $\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }} = a + \dfrac{{7\sqrt 5 }}{{11}}b$.
Answer
573.3k+ views
Hint: First we will rationalize the denominator of L.H.S of rational number. Further, we will simplify and write in the same way as in value of the RHS. Thereafter we will compare the coefficient of $aandb$.
Complete step by step Solution:
Given $\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }}\, - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }} = a + \dfrac{{7\sqrt 5 }}{{11}}b$
We will take L.H.S.,we have
$\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }}$
Rationalizing the denominator of both the terms , we get
$\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} \times \dfrac{{7 + \sqrt 5 }}{{7 + \sqrt 5 }} - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }} \times \dfrac{{7 - \sqrt 5 }}{{7 - \sqrt 5 }}$
$ = \dfrac{{{{\left( {7 + \sqrt 5 } \right)}^2}}}{{{7^2} - {{\left( {\sqrt 5 } \right)}^2}}} - \dfrac{{{{\left( {7 - \sqrt 5 } \right)}^2}}}{{{7^2} - {{\left( {\sqrt 5 } \right)}^2}}}$ …(i)
By using the algebraic identity used in (i) equation
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab,\,\,{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ and ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ .
So $\dfrac{{{7^2} + {{\left( {\sqrt 5 } \right)}^2} + 2 \times 7 \times \sqrt 5 }}{{49 - 5}} - \dfrac{{{7^2} + {{\left( {\sqrt 5 } \right)}^2} - 2 \times 7 \times \sqrt 5 }}{{49 - 5}}$
$ = \dfrac{{49 + 5 + 14\sqrt 5 }}{{44}} - \dfrac{{49 + 5 - 14\sqrt 5 }}{{44}}$
$\dfrac{{54 + 14\sqrt 5 }}{{44}} - \dfrac{{54 - 14\sqrt 5 }}{{44}}$
$ = \dfrac{{54 + 14\sqrt 5 - 54 + 14\sqrt 5 }}{{44}}$
$ = \dfrac{{8\sqrt 5 }}{{44}} = \dfrac{{7\sqrt 5 }}{4}$
$ = 0 + \dfrac{{7\sqrt 5 }}{4}$
Hence $0 + \dfrac{{7\sqrt 5 }}{4} = $ R.H.S.
$0 + \dfrac{{7\sqrt 5 }}{4} = a + \dfrac{{7\sqrt 5 }}{4}b$
Comparing both sides we get $a = 0\,and\,\,b = 1.$
Note: In this type of question,students must keep in mind the uses of algebraic identities and use suitable identity for any value. When we rationalize the denominator, we take the opposite sign of the value in the denominator in the numerator.
Complete step by step Solution:
Given $\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }}\, - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }} = a + \dfrac{{7\sqrt 5 }}{{11}}b$
We will take L.H.S.,we have
$\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }}$
Rationalizing the denominator of both the terms , we get
$\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} \times \dfrac{{7 + \sqrt 5 }}{{7 + \sqrt 5 }} - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }} \times \dfrac{{7 - \sqrt 5 }}{{7 - \sqrt 5 }}$
$ = \dfrac{{{{\left( {7 + \sqrt 5 } \right)}^2}}}{{{7^2} - {{\left( {\sqrt 5 } \right)}^2}}} - \dfrac{{{{\left( {7 - \sqrt 5 } \right)}^2}}}{{{7^2} - {{\left( {\sqrt 5 } \right)}^2}}}$ …(i)
By using the algebraic identity used in (i) equation
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab,\,\,{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ and ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ .
So $\dfrac{{{7^2} + {{\left( {\sqrt 5 } \right)}^2} + 2 \times 7 \times \sqrt 5 }}{{49 - 5}} - \dfrac{{{7^2} + {{\left( {\sqrt 5 } \right)}^2} - 2 \times 7 \times \sqrt 5 }}{{49 - 5}}$
$ = \dfrac{{49 + 5 + 14\sqrt 5 }}{{44}} - \dfrac{{49 + 5 - 14\sqrt 5 }}{{44}}$
$\dfrac{{54 + 14\sqrt 5 }}{{44}} - \dfrac{{54 - 14\sqrt 5 }}{{44}}$
$ = \dfrac{{54 + 14\sqrt 5 - 54 + 14\sqrt 5 }}{{44}}$
$ = \dfrac{{8\sqrt 5 }}{{44}} = \dfrac{{7\sqrt 5 }}{4}$
$ = 0 + \dfrac{{7\sqrt 5 }}{4}$
Hence $0 + \dfrac{{7\sqrt 5 }}{4} = $ R.H.S.
$0 + \dfrac{{7\sqrt 5 }}{4} = a + \dfrac{{7\sqrt 5 }}{4}b$
Comparing both sides we get $a = 0\,and\,\,b = 1.$
Note: In this type of question,students must keep in mind the uses of algebraic identities and use suitable identity for any value. When we rationalize the denominator, we take the opposite sign of the value in the denominator in the numerator.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

