
Find the value of a & b $\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }} = a + \dfrac{{7\sqrt 5 }}{{11}}b$.
Answer
588k+ views
Hint: First we will rationalize the denominator of L.H.S of rational number. Further, we will simplify and write in the same way as in value of the RHS. Thereafter we will compare the coefficient of $aandb$.
Complete step by step Solution:
Given $\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }}\, - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }} = a + \dfrac{{7\sqrt 5 }}{{11}}b$
We will take L.H.S.,we have
$\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }}$
Rationalizing the denominator of both the terms , we get
$\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} \times \dfrac{{7 + \sqrt 5 }}{{7 + \sqrt 5 }} - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }} \times \dfrac{{7 - \sqrt 5 }}{{7 - \sqrt 5 }}$
$ = \dfrac{{{{\left( {7 + \sqrt 5 } \right)}^2}}}{{{7^2} - {{\left( {\sqrt 5 } \right)}^2}}} - \dfrac{{{{\left( {7 - \sqrt 5 } \right)}^2}}}{{{7^2} - {{\left( {\sqrt 5 } \right)}^2}}}$ …(i)
By using the algebraic identity used in (i) equation
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab,\,\,{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ and ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ .
So $\dfrac{{{7^2} + {{\left( {\sqrt 5 } \right)}^2} + 2 \times 7 \times \sqrt 5 }}{{49 - 5}} - \dfrac{{{7^2} + {{\left( {\sqrt 5 } \right)}^2} - 2 \times 7 \times \sqrt 5 }}{{49 - 5}}$
$ = \dfrac{{49 + 5 + 14\sqrt 5 }}{{44}} - \dfrac{{49 + 5 - 14\sqrt 5 }}{{44}}$
$\dfrac{{54 + 14\sqrt 5 }}{{44}} - \dfrac{{54 - 14\sqrt 5 }}{{44}}$
$ = \dfrac{{54 + 14\sqrt 5 - 54 + 14\sqrt 5 }}{{44}}$
$ = \dfrac{{8\sqrt 5 }}{{44}} = \dfrac{{7\sqrt 5 }}{4}$
$ = 0 + \dfrac{{7\sqrt 5 }}{4}$
Hence $0 + \dfrac{{7\sqrt 5 }}{4} = $ R.H.S.
$0 + \dfrac{{7\sqrt 5 }}{4} = a + \dfrac{{7\sqrt 5 }}{4}b$
Comparing both sides we get $a = 0\,and\,\,b = 1.$
Note: In this type of question,students must keep in mind the uses of algebraic identities and use suitable identity for any value. When we rationalize the denominator, we take the opposite sign of the value in the denominator in the numerator.
Complete step by step Solution:
Given $\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }}\, - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }} = a + \dfrac{{7\sqrt 5 }}{{11}}b$
We will take L.H.S.,we have
$\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }}$
Rationalizing the denominator of both the terms , we get
$\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} \times \dfrac{{7 + \sqrt 5 }}{{7 + \sqrt 5 }} - \dfrac{{7 - \sqrt 5 }}{{7 + \sqrt 5 }} \times \dfrac{{7 - \sqrt 5 }}{{7 - \sqrt 5 }}$
$ = \dfrac{{{{\left( {7 + \sqrt 5 } \right)}^2}}}{{{7^2} - {{\left( {\sqrt 5 } \right)}^2}}} - \dfrac{{{{\left( {7 - \sqrt 5 } \right)}^2}}}{{{7^2} - {{\left( {\sqrt 5 } \right)}^2}}}$ …(i)
By using the algebraic identity used in (i) equation
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab,\,\,{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ and ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ .
So $\dfrac{{{7^2} + {{\left( {\sqrt 5 } \right)}^2} + 2 \times 7 \times \sqrt 5 }}{{49 - 5}} - \dfrac{{{7^2} + {{\left( {\sqrt 5 } \right)}^2} - 2 \times 7 \times \sqrt 5 }}{{49 - 5}}$
$ = \dfrac{{49 + 5 + 14\sqrt 5 }}{{44}} - \dfrac{{49 + 5 - 14\sqrt 5 }}{{44}}$
$\dfrac{{54 + 14\sqrt 5 }}{{44}} - \dfrac{{54 - 14\sqrt 5 }}{{44}}$
$ = \dfrac{{54 + 14\sqrt 5 - 54 + 14\sqrt 5 }}{{44}}$
$ = \dfrac{{8\sqrt 5 }}{{44}} = \dfrac{{7\sqrt 5 }}{4}$
$ = 0 + \dfrac{{7\sqrt 5 }}{4}$
Hence $0 + \dfrac{{7\sqrt 5 }}{4} = $ R.H.S.
$0 + \dfrac{{7\sqrt 5 }}{4} = a + \dfrac{{7\sqrt 5 }}{4}b$
Comparing both sides we get $a = 0\,and\,\,b = 1.$
Note: In this type of question,students must keep in mind the uses of algebraic identities and use suitable identity for any value. When we rationalize the denominator, we take the opposite sign of the value in the denominator in the numerator.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

