
Find the value of $8\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)\left( {\sin {{54}^ \circ }} \right)$
Answer
591.6k+ views
Hint: Rewrite the equation to use the formula $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$ in the expression $\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)$. Further, apply the formula $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$ and simplify the given expression. Then, use various trigonometric identities to solve it.
Complete step by step Answer:
We have to calculate the value of $8\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)\left( {\sin {{54}^ \circ }} \right)$
We know that $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
We can rewrite the equation as $4\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)\left( {\sin {{54}^ \circ }} \right)$ (1)
Now, applying the formula in $\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)$, we will get
$
\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right) = \cos \left( {{{12}^ \circ } - {{48}^ \circ }} \right) - \cos \left( {{{12}^ \circ } + {{48}^ \circ }} \right) \\
\Rightarrow \left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right) = \cos \left( { - {{36}^ \circ }} \right) - \cos \left( {{{60}^ \circ }} \right) \\
$
We know that $\cos \left( { - \theta } \right) = \cos \theta $ and \[\cos {60^ \circ } = \dfrac{1}{2}\]
On substituting the values in the above equation, we get
\[\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right) = \cos \left( {{{36}^ \circ }} \right) - \dfrac{1}{2}\]
Substitute the value of the expression $\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)$ in equation (1)
$4\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)\left( {\sin {{54}^ \circ }} \right) = 4\left( {\cos {{36}^ \circ } - \dfrac{1}{2}} \right)\left( {\sin {{54}^ \circ }} \right)$
Now, we will simplify the expression by opening the brackets
$
4\left( {\cos {{36}^ \circ } - \dfrac{1}{2}} \right)\left( {\sin {{54}^ \circ }} \right) = \left( {4\cos {{36}^ \circ } - 2} \right)\left( {\sin {{54}^ \circ }} \right) \\
\Rightarrow 4\cos {36^ \circ }\sin {54^ \circ } - 2\sin {54^ \circ } \\
$
Now, we know that $\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$
Therefore,
$
\sin {54^ \circ } = \cos \left( {{{90}^ \circ } - {{54}^ \circ }} \right) \\
= \cos \left( {{{36}^ \circ }} \right) \\
$
Hence, the expression $4\cos {36^ \circ }\sin {54^ \circ } - 2\sin {54^ \circ }$ can be written as,
$4\cos {36^ \circ }\cos {36^ \circ } - 2\cos {36^ \circ } = 4{\cos ^2}{36^ \circ } - 2\cos {36^ \circ }$
Now, we will simplify the above equation by taking common term 2 out
$4\cos {36^ \circ }\cos {36^ \circ } - 2\cos {36^ \circ } = 2\left( {2{{\cos }^2}{{36}^ \circ } - \cos {{36}^ \circ }} \right)$
On applying the formula $2{\cos ^2}x = 1 + \cos 2x$, we have
$4\cos {36^ \circ }\cos {36^ \circ } - 2\cos {36^ \circ } = 2\left( {1 + \cos {{72}^ \circ } - \cos {{36}^ \circ }} \right)$
We know that $\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$
2\left( {1 + \cos {{72}^ \circ } - \cos {{36}^ \circ }} \right) = 2 + 2\left( {\cos {{72}^ \circ } - \cos {{36}^ \circ }} \right) \\
\Rightarrow 2 + 2\left( {\cos {{72}^ \circ } - \cos {{36}^ \circ }} \right) = 2 - 4\sin \left( {\dfrac{{{{72}^ \circ } + {{36}^ \circ }}}{2}} \right)\sin \left( {\dfrac{{{{72}^ \circ } - {{36}^ \circ }}}{2}} \right) \\
\Rightarrow 2 + 2\left( {\cos {{72}^ \circ } - \cos {{36}^ \circ }} \right) = 2 - 4\sin {54^ \circ }\sin {18^ \circ } \\
$
Again, $\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$
Then $\sin {54^ \circ } = \cos \left( {{{36}^ \circ }} \right)$
So, we have the expression as $2 - 4\sin {54^ \circ }\sin {18^ \circ } = 2 - 4\cos {36^ \circ }\sin {18^ \circ }$
We know that 36 is twice of 18
Multiply and divide the expression by $\cos {18^ \circ }$ the expression $2 - 4\cos {36^ \circ }\sin {18^ \circ }$
Then, we have $2 - \dfrac{{4\cos {{36}^ \circ }\sin {{18}^ \circ }\cos {{18}^ \circ }}}{{\cos {{18}^ \circ }}}$
Since, $2\sin x\cos x = \sin 2x$
Then, $2 - \dfrac{{4\cos {{36}^ \circ }\sin {{18}^ \circ }\cos {{18}^ \circ }}}{{\cos {{18}^ \circ }}} = 2 - \dfrac{{2\cos {{36}^ \circ }\sin {{36}^ \circ }}}{{\cos {{18}^ \circ }}}$
Similarly, $2 - \dfrac{{2\cos {{36}^ \circ }\sin {{36}^ \circ }}}{{\cos {{18}^ \circ }}} = 2 - \dfrac{{\sin {{72}^ \circ }}}{{\cos {{18}^ \circ }}}$
Now,
$
\sin {72^ \circ } = \cos \left( {{{90}^ \circ } - {{72}^ \circ }} \right) \\
\sin {72^ \circ } = \cos {18^ \circ } \\
$
On substituting the value, we get
$
2 - \dfrac{{\cos {{18}^ \circ }}}{{\cos {{18}^ \circ }}} = 2 - 1 \\
\Rightarrow 2 - 1 = 1 \\
$
Hence, the value of $8\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)\left( {\sin {{54}^ \circ }} \right)$ is 1
Note: Students must know the trigonometric identities to solve this question. Avoid calculation mistakes. Simplification of the terms is an important step in these questions. Many students get stuck by not using simplification formulas like $\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$
Complete step by step Answer:
We have to calculate the value of $8\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)\left( {\sin {{54}^ \circ }} \right)$
We know that $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
We can rewrite the equation as $4\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)\left( {\sin {{54}^ \circ }} \right)$ (1)
Now, applying the formula in $\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)$, we will get
$
\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right) = \cos \left( {{{12}^ \circ } - {{48}^ \circ }} \right) - \cos \left( {{{12}^ \circ } + {{48}^ \circ }} \right) \\
\Rightarrow \left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right) = \cos \left( { - {{36}^ \circ }} \right) - \cos \left( {{{60}^ \circ }} \right) \\
$
We know that $\cos \left( { - \theta } \right) = \cos \theta $ and \[\cos {60^ \circ } = \dfrac{1}{2}\]
On substituting the values in the above equation, we get
\[\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right) = \cos \left( {{{36}^ \circ }} \right) - \dfrac{1}{2}\]
Substitute the value of the expression $\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)$ in equation (1)
$4\left( 2 \right)\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)\left( {\sin {{54}^ \circ }} \right) = 4\left( {\cos {{36}^ \circ } - \dfrac{1}{2}} \right)\left( {\sin {{54}^ \circ }} \right)$
Now, we will simplify the expression by opening the brackets
$
4\left( {\cos {{36}^ \circ } - \dfrac{1}{2}} \right)\left( {\sin {{54}^ \circ }} \right) = \left( {4\cos {{36}^ \circ } - 2} \right)\left( {\sin {{54}^ \circ }} \right) \\
\Rightarrow 4\cos {36^ \circ }\sin {54^ \circ } - 2\sin {54^ \circ } \\
$
Now, we know that $\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$
Therefore,
$
\sin {54^ \circ } = \cos \left( {{{90}^ \circ } - {{54}^ \circ }} \right) \\
= \cos \left( {{{36}^ \circ }} \right) \\
$
Hence, the expression $4\cos {36^ \circ }\sin {54^ \circ } - 2\sin {54^ \circ }$ can be written as,
$4\cos {36^ \circ }\cos {36^ \circ } - 2\cos {36^ \circ } = 4{\cos ^2}{36^ \circ } - 2\cos {36^ \circ }$
Now, we will simplify the above equation by taking common term 2 out
$4\cos {36^ \circ }\cos {36^ \circ } - 2\cos {36^ \circ } = 2\left( {2{{\cos }^2}{{36}^ \circ } - \cos {{36}^ \circ }} \right)$
On applying the formula $2{\cos ^2}x = 1 + \cos 2x$, we have
$4\cos {36^ \circ }\cos {36^ \circ } - 2\cos {36^ \circ } = 2\left( {1 + \cos {{72}^ \circ } - \cos {{36}^ \circ }} \right)$
We know that $\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$
2\left( {1 + \cos {{72}^ \circ } - \cos {{36}^ \circ }} \right) = 2 + 2\left( {\cos {{72}^ \circ } - \cos {{36}^ \circ }} \right) \\
\Rightarrow 2 + 2\left( {\cos {{72}^ \circ } - \cos {{36}^ \circ }} \right) = 2 - 4\sin \left( {\dfrac{{{{72}^ \circ } + {{36}^ \circ }}}{2}} \right)\sin \left( {\dfrac{{{{72}^ \circ } - {{36}^ \circ }}}{2}} \right) \\
\Rightarrow 2 + 2\left( {\cos {{72}^ \circ } - \cos {{36}^ \circ }} \right) = 2 - 4\sin {54^ \circ }\sin {18^ \circ } \\
$
Again, $\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$
Then $\sin {54^ \circ } = \cos \left( {{{36}^ \circ }} \right)$
So, we have the expression as $2 - 4\sin {54^ \circ }\sin {18^ \circ } = 2 - 4\cos {36^ \circ }\sin {18^ \circ }$
We know that 36 is twice of 18
Multiply and divide the expression by $\cos {18^ \circ }$ the expression $2 - 4\cos {36^ \circ }\sin {18^ \circ }$
Then, we have $2 - \dfrac{{4\cos {{36}^ \circ }\sin {{18}^ \circ }\cos {{18}^ \circ }}}{{\cos {{18}^ \circ }}}$
Since, $2\sin x\cos x = \sin 2x$
Then, $2 - \dfrac{{4\cos {{36}^ \circ }\sin {{18}^ \circ }\cos {{18}^ \circ }}}{{\cos {{18}^ \circ }}} = 2 - \dfrac{{2\cos {{36}^ \circ }\sin {{36}^ \circ }}}{{\cos {{18}^ \circ }}}$
Similarly, $2 - \dfrac{{2\cos {{36}^ \circ }\sin {{36}^ \circ }}}{{\cos {{18}^ \circ }}} = 2 - \dfrac{{\sin {{72}^ \circ }}}{{\cos {{18}^ \circ }}}$
Now,
$
\sin {72^ \circ } = \cos \left( {{{90}^ \circ } - {{72}^ \circ }} \right) \\
\sin {72^ \circ } = \cos {18^ \circ } \\
$
On substituting the value, we get
$
2 - \dfrac{{\cos {{18}^ \circ }}}{{\cos {{18}^ \circ }}} = 2 - 1 \\
\Rightarrow 2 - 1 = 1 \\
$
Hence, the value of $8\left( {\sin {{12}^ \circ }} \right)\left( {\sin {{48}^ \circ }} \right)\left( {\sin {{54}^ \circ }} \right)$ is 1
Note: Students must know the trigonometric identities to solve this question. Avoid calculation mistakes. Simplification of the terms is an important step in these questions. Many students get stuck by not using simplification formulas like $\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

