Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the value of $1+{{\cot }^{2}}\theta $
A. ${{\sec }^{2}}\theta $
B. ${{\operatorname{cosec}}^{2}}\theta $
C. ${{\tan }^{2}}\theta $
D. 1

Answer
VerifiedVerified
506.7k+ views
Hint: To solve this question we will use the trigonometric identities and trigonometric formulas. Following trigonometric rules will be used to solve this question:
$\begin{align}
  & \cot \theta =\dfrac{\cos \theta }{\sin \theta } \\
 & {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
 & \dfrac{1}{\sin \theta }=cosec\theta \\
\end{align}$

Complete answer:
We have to solve $1+{{\cot }^{2}}\theta $.
We know that $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$
Now, substituting the value in the given equation we get
\[\begin{align}
  & \Rightarrow 1+{{\cot }^{2}}\theta \\
 & \Rightarrow 1+{{\left( \dfrac{\cos \theta }{\sin \theta } \right)}^{2}} \\
\end{align}\]
Now, solving further we get
\[\Rightarrow 1+\left( \dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right)\]
By taking LCM and solving further we get
\[\Rightarrow \dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }\]
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
Now, substituting the value in the above equation we get
\[\Rightarrow \dfrac{1}{{{\sin }^{2}}\theta }\]
Now, we know that $\dfrac{1}{\sin \theta }=cosec\theta $
Substituting the value in the above equation we get
$\Rightarrow cose{{c}^{2}}\theta $
So, we get the value of $1+{{\cot }^{2}}\theta =cose{{c}^{2}}\theta $.

Option B is the correct answer.

Note:
To solve such types of questions always remember the trigonometric functions and identities. Also be careful while conversion of functions, please avoid mistakes. The key concept to solve this question is to simplify the given equation using trigonometric functions.