
Find the value angle A in degrees if $ \sin 2A = 1 $
Answer
507.9k+ views
Hint: Use different identities of trigonometric properties. Also, use the method of factorization for the quadratic equations. Use formulas like
$
{\sin ^2}\theta = 1 - {\cos ^2}\theta \\
{(a - b)^2} = {a^2} - 2ab + {b^2} \\
\sin 2A = 2\sin A\cos A \;
$
Complete step-by-step answer:
Given that $ \sin 2A = 1 $
Substitute formula in the above equation, $ \sin 2A = 2\sin A\cos A $
$
\Rightarrow 2\sin A\cos A = 1 \\
\therefore \sin A\cos A = \dfrac{1}{2} \\
$
(Numerator in the multiplication with the terms goes in the denominator when changes its sides and vice –versa)
Also, substitute, $ \cos A = \sqrt {1 - {{\sin }^2}A} $
$ \therefore \sin A(\sqrt {1 - {{\sin }^2}A} ) = \dfrac{1}{2} $
Let,
$
sinA = x \\
\therefore si{n^2}A = {x^2} \\
$
$
\Rightarrow x(\sqrt {1 - {x^2}} ) = \dfrac{1}{2} \\
\Rightarrow \sqrt {1 - {x^2}} = \dfrac{1}{{2x}} \;
$
Squaring on both the sides-
$ $ $
\Rightarrow {(\sqrt {1 - {x^2}} )^2} = {(\dfrac{1}{{2x}})^2} \\
\Rightarrow 1 - {x^2} = \dfrac{1}{{4{x^2}}} \\
$
[According to the property that squares and square root cancel each other]
Now, do the cross-multiplication and simplify-
$
\therefore 4{x^2}(1 - {x^2}) = 1 \\
\therefore 4{x^2} - 4{x^4} = 1 \;
$
Take all the terms on the left hand side –
$ 4{x^2} - 4{x^4} - 1 = 0 $
Take negative sign common from all the sides –
$ 4{x^4} - 4{x^2} + 1 = 0 $
Use perfect square formula in the above equation-
$
{(2{x^2} - 1)^2} = 0\;{\text{ [(a - b}}{{\text{)}}^2} = {a^2} - 2ab + {b^2}] \\
\therefore (2{x^2} - 1) = 0 \\
\therefore 2{x^2} = 1 \\
\therefore {x^2} = \dfrac{1}{2} \\
\therefore x = \dfrac{{ \pm 1}}{{\sqrt 2 }} \;
$
Hence, put value of “x”
$ sinA = \dfrac{1}{{\sqrt 2 }}{\text{ or sinA = }}\dfrac{{ - 1}}{{\sqrt 2 }} $
As, we know that –
$
sin45^\circ = \dfrac{1}{{\sqrt 2 }} \\
sinA = sin45^\circ \\
\therefore A = 45^\circ \\
\therefore A = \dfrac{\pi }{4} \;
$
$ {\text{sinA = }}\dfrac{{ - 1}}{{\sqrt 2 }} $
Since Sin trigonometric functions are the odd functions
$
f( - x) = f(x) \\
sinA = - sin45^\circ \\
\therefore A = - 45^\circ \\
\therefore A = \dfrac{{ - \pi }}{4} ;
$
Hence, the required solution is –
The value of angle A is $ 45^\circ $ , if $ \sin 2A = 1 $
So, the correct answer is “ $ 45^\circ $ ”.
Note: Remember the properties of sines and cosines and apply accordingly. The odd and even trigonometric functions states that -
$
\sin ( - \theta ) = - \sin \theta \\
\cos ( - \theta ) = \cos \theta \;
$
The most important property of sines and cosines is that their values lie between minus one and plus one. Every point on the circle is unit circle from the origin. So, the coordinates of any point are within one of zero as well.
Directly the Pythagoras identity are followed by sines and cosines which concludes that –
$ si{n^2}\theta + co{s^2}\theta = 1 $
$
{\sin ^2}\theta = 1 - {\cos ^2}\theta \\
{(a - b)^2} = {a^2} - 2ab + {b^2} \\
\sin 2A = 2\sin A\cos A \;
$
Complete step-by-step answer:
Given that $ \sin 2A = 1 $
Substitute formula in the above equation, $ \sin 2A = 2\sin A\cos A $
$
\Rightarrow 2\sin A\cos A = 1 \\
\therefore \sin A\cos A = \dfrac{1}{2} \\
$
(Numerator in the multiplication with the terms goes in the denominator when changes its sides and vice –versa)
Also, substitute, $ \cos A = \sqrt {1 - {{\sin }^2}A} $
$ \therefore \sin A(\sqrt {1 - {{\sin }^2}A} ) = \dfrac{1}{2} $
Let,
$
sinA = x \\
\therefore si{n^2}A = {x^2} \\
$
$
\Rightarrow x(\sqrt {1 - {x^2}} ) = \dfrac{1}{2} \\
\Rightarrow \sqrt {1 - {x^2}} = \dfrac{1}{{2x}} \;
$
Squaring on both the sides-
$ $ $
\Rightarrow {(\sqrt {1 - {x^2}} )^2} = {(\dfrac{1}{{2x}})^2} \\
\Rightarrow 1 - {x^2} = \dfrac{1}{{4{x^2}}} \\
$
[According to the property that squares and square root cancel each other]
Now, do the cross-multiplication and simplify-
$
\therefore 4{x^2}(1 - {x^2}) = 1 \\
\therefore 4{x^2} - 4{x^4} = 1 \;
$
Take all the terms on the left hand side –
$ 4{x^2} - 4{x^4} - 1 = 0 $
Take negative sign common from all the sides –
$ 4{x^4} - 4{x^2} + 1 = 0 $
Use perfect square formula in the above equation-
$
{(2{x^2} - 1)^2} = 0\;{\text{ [(a - b}}{{\text{)}}^2} = {a^2} - 2ab + {b^2}] \\
\therefore (2{x^2} - 1) = 0 \\
\therefore 2{x^2} = 1 \\
\therefore {x^2} = \dfrac{1}{2} \\
\therefore x = \dfrac{{ \pm 1}}{{\sqrt 2 }} \;
$
Hence, put value of “x”
$ sinA = \dfrac{1}{{\sqrt 2 }}{\text{ or sinA = }}\dfrac{{ - 1}}{{\sqrt 2 }} $
As, we know that –
$
sin45^\circ = \dfrac{1}{{\sqrt 2 }} \\
sinA = sin45^\circ \\
\therefore A = 45^\circ \\
\therefore A = \dfrac{\pi }{4} \;
$
$ {\text{sinA = }}\dfrac{{ - 1}}{{\sqrt 2 }} $
Since Sin trigonometric functions are the odd functions
$
f( - x) = f(x) \\
sinA = - sin45^\circ \\
\therefore A = - 45^\circ \\
\therefore A = \dfrac{{ - \pi }}{4} ;
$
Hence, the required solution is –
The value of angle A is $ 45^\circ $ , if $ \sin 2A = 1 $
So, the correct answer is “ $ 45^\circ $ ”.
Note: Remember the properties of sines and cosines and apply accordingly. The odd and even trigonometric functions states that -
$
\sin ( - \theta ) = - \sin \theta \\
\cos ( - \theta ) = \cos \theta \;
$
The most important property of sines and cosines is that their values lie between minus one and plus one. Every point on the circle is unit circle from the origin. So, the coordinates of any point are within one of zero as well.
Directly the Pythagoras identity are followed by sines and cosines which concludes that –
$ si{n^2}\theta + co{s^2}\theta = 1 $
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

The oxidation number of sulphur in Caros acid H2SO5 class 11 chemistry CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE

How many quintals are there in one metric ton A 10 class 11 physics CBSE

Draw the molecular orbital diagram of N2N2 + N2 Write class 11 chemistry CBSE
