
Find the value angle A in degrees if $ \sin 2A = 1 $
Answer
569.4k+ views
Hint: Use different identities of trigonometric properties. Also, use the method of factorization for the quadratic equations. Use formulas like
$
{\sin ^2}\theta = 1 - {\cos ^2}\theta \\
{(a - b)^2} = {a^2} - 2ab + {b^2} \\
\sin 2A = 2\sin A\cos A \;
$
Complete step-by-step answer:
Given that $ \sin 2A = 1 $
Substitute formula in the above equation, $ \sin 2A = 2\sin A\cos A $
$
\Rightarrow 2\sin A\cos A = 1 \\
\therefore \sin A\cos A = \dfrac{1}{2} \\
$
(Numerator in the multiplication with the terms goes in the denominator when changes its sides and vice –versa)
Also, substitute, $ \cos A = \sqrt {1 - {{\sin }^2}A} $
$ \therefore \sin A(\sqrt {1 - {{\sin }^2}A} ) = \dfrac{1}{2} $
Let,
$
sinA = x \\
\therefore si{n^2}A = {x^2} \\
$
$
\Rightarrow x(\sqrt {1 - {x^2}} ) = \dfrac{1}{2} \\
\Rightarrow \sqrt {1 - {x^2}} = \dfrac{1}{{2x}} \;
$
Squaring on both the sides-
$ $ $
\Rightarrow {(\sqrt {1 - {x^2}} )^2} = {(\dfrac{1}{{2x}})^2} \\
\Rightarrow 1 - {x^2} = \dfrac{1}{{4{x^2}}} \\
$
[According to the property that squares and square root cancel each other]
Now, do the cross-multiplication and simplify-
$
\therefore 4{x^2}(1 - {x^2}) = 1 \\
\therefore 4{x^2} - 4{x^4} = 1 \;
$
Take all the terms on the left hand side –
$ 4{x^2} - 4{x^4} - 1 = 0 $
Take negative sign common from all the sides –
$ 4{x^4} - 4{x^2} + 1 = 0 $
Use perfect square formula in the above equation-
$
{(2{x^2} - 1)^2} = 0\;{\text{ [(a - b}}{{\text{)}}^2} = {a^2} - 2ab + {b^2}] \\
\therefore (2{x^2} - 1) = 0 \\
\therefore 2{x^2} = 1 \\
\therefore {x^2} = \dfrac{1}{2} \\
\therefore x = \dfrac{{ \pm 1}}{{\sqrt 2 }} \;
$
Hence, put value of “x”
$ sinA = \dfrac{1}{{\sqrt 2 }}{\text{ or sinA = }}\dfrac{{ - 1}}{{\sqrt 2 }} $
As, we know that –
$
sin45^\circ = \dfrac{1}{{\sqrt 2 }} \\
sinA = sin45^\circ \\
\therefore A = 45^\circ \\
\therefore A = \dfrac{\pi }{4} \;
$
$ {\text{sinA = }}\dfrac{{ - 1}}{{\sqrt 2 }} $
Since Sin trigonometric functions are the odd functions
$
f( - x) = f(x) \\
sinA = - sin45^\circ \\
\therefore A = - 45^\circ \\
\therefore A = \dfrac{{ - \pi }}{4} ;
$
Hence, the required solution is –
The value of angle A is $ 45^\circ $ , if $ \sin 2A = 1 $
So, the correct answer is “ $ 45^\circ $ ”.
Note: Remember the properties of sines and cosines and apply accordingly. The odd and even trigonometric functions states that -
$
\sin ( - \theta ) = - \sin \theta \\
\cos ( - \theta ) = \cos \theta \;
$
The most important property of sines and cosines is that their values lie between minus one and plus one. Every point on the circle is unit circle from the origin. So, the coordinates of any point are within one of zero as well.
Directly the Pythagoras identity are followed by sines and cosines which concludes that –
$ si{n^2}\theta + co{s^2}\theta = 1 $
$
{\sin ^2}\theta = 1 - {\cos ^2}\theta \\
{(a - b)^2} = {a^2} - 2ab + {b^2} \\
\sin 2A = 2\sin A\cos A \;
$
Complete step-by-step answer:
Given that $ \sin 2A = 1 $
Substitute formula in the above equation, $ \sin 2A = 2\sin A\cos A $
$
\Rightarrow 2\sin A\cos A = 1 \\
\therefore \sin A\cos A = \dfrac{1}{2} \\
$
(Numerator in the multiplication with the terms goes in the denominator when changes its sides and vice –versa)
Also, substitute, $ \cos A = \sqrt {1 - {{\sin }^2}A} $
$ \therefore \sin A(\sqrt {1 - {{\sin }^2}A} ) = \dfrac{1}{2} $
Let,
$
sinA = x \\
\therefore si{n^2}A = {x^2} \\
$
$
\Rightarrow x(\sqrt {1 - {x^2}} ) = \dfrac{1}{2} \\
\Rightarrow \sqrt {1 - {x^2}} = \dfrac{1}{{2x}} \;
$
Squaring on both the sides-
$ $ $
\Rightarrow {(\sqrt {1 - {x^2}} )^2} = {(\dfrac{1}{{2x}})^2} \\
\Rightarrow 1 - {x^2} = \dfrac{1}{{4{x^2}}} \\
$
[According to the property that squares and square root cancel each other]
Now, do the cross-multiplication and simplify-
$
\therefore 4{x^2}(1 - {x^2}) = 1 \\
\therefore 4{x^2} - 4{x^4} = 1 \;
$
Take all the terms on the left hand side –
$ 4{x^2} - 4{x^4} - 1 = 0 $
Take negative sign common from all the sides –
$ 4{x^4} - 4{x^2} + 1 = 0 $
Use perfect square formula in the above equation-
$
{(2{x^2} - 1)^2} = 0\;{\text{ [(a - b}}{{\text{)}}^2} = {a^2} - 2ab + {b^2}] \\
\therefore (2{x^2} - 1) = 0 \\
\therefore 2{x^2} = 1 \\
\therefore {x^2} = \dfrac{1}{2} \\
\therefore x = \dfrac{{ \pm 1}}{{\sqrt 2 }} \;
$
Hence, put value of “x”
$ sinA = \dfrac{1}{{\sqrt 2 }}{\text{ or sinA = }}\dfrac{{ - 1}}{{\sqrt 2 }} $
As, we know that –
$
sin45^\circ = \dfrac{1}{{\sqrt 2 }} \\
sinA = sin45^\circ \\
\therefore A = 45^\circ \\
\therefore A = \dfrac{\pi }{4} \;
$
$ {\text{sinA = }}\dfrac{{ - 1}}{{\sqrt 2 }} $
Since Sin trigonometric functions are the odd functions
$
f( - x) = f(x) \\
sinA = - sin45^\circ \\
\therefore A = - 45^\circ \\
\therefore A = \dfrac{{ - \pi }}{4} ;
$
Hence, the required solution is –
The value of angle A is $ 45^\circ $ , if $ \sin 2A = 1 $
So, the correct answer is “ $ 45^\circ $ ”.
Note: Remember the properties of sines and cosines and apply accordingly. The odd and even trigonometric functions states that -
$
\sin ( - \theta ) = - \sin \theta \\
\cos ( - \theta ) = \cos \theta \;
$
The most important property of sines and cosines is that their values lie between minus one and plus one. Every point on the circle is unit circle from the origin. So, the coordinates of any point are within one of zero as well.
Directly the Pythagoras identity are followed by sines and cosines which concludes that –
$ si{n^2}\theta + co{s^2}\theta = 1 $
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

