
How do you find the upper bound of a polynomial?
Answer
532.2k+ views
Hint: We take an arbitrary function and then find the slope of the given function $f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2$. We equate it with 0. Extremum points in a curve have slope value 0. We solve the quadratic solution to find the coordinates and the points.
Complete step by step solution:
We know that the upper bound of a polynomial is the maximum value of the polynomial for any point in its domain.
We take an arbitrary polynomial $f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2$.
We need to find the upper bound of the function $f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2$.
To find the extremum points we need to find the slope of the function and also the value of the point where the slope will be 0.
Extremum points in a curve have slope value 0.
The slope of the function $f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2$ can be found from the derivative of the function ${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]$.
We differentiate both sides of the function $f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2$ with respect to $x$.
$\begin{align}
& f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2 \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ -{{x}^{3}}-6{{x}^{2}}-9x-2 \right] \\
\end{align}$.
We know that the differentiation form for ${{n}^{th}}$ power of $x$ is $\dfrac{d}{dx}\left[ {{x}^{n}} \right]=n{{x}^{n-1}}$.
Therefore, ${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( -{{x}^{3}} \right)+\dfrac{d}{dx}\left( -6{{x}^{2}} \right)+\dfrac{d}{dx}\left( -9x \right)+\dfrac{d}{dx}\left( -2 \right)=-3{{x}^{2}}-12x-9$.
To find the $x$ coordinates of the extremum point we take $-3{{x}^{2}}-12x-9=0$.
Solving the given quadratic equation
$\begin{align}
& -3{{x}^{2}}-12x-9=0 \\
& \Rightarrow {{x}^{2}}+4x+3=0 \\
\end{align}$
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}+4x+3=0$. The values of $a,b,c$ is $1,4,3$ respectively.
We put the values and get $x$ as $x=\dfrac{-4\pm \sqrt{{{4}^{2}}-4\times 1\times 3}}{2\times 1}=\dfrac{-4\pm \sqrt{4}}{2}=\dfrac{-4\pm 2}{2}=-1,-3$.
Therefore, from the value of the $x$ coordinates of the extremum points, we find their $y$ coordinates.
We put values of $x=-1,-3$ in $f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2$.
For $x=-1$, the value of \[y=f\left( -1 \right)=-{{\left( -1 \right)}^{3}}-6{{\left( -1 \right)}^{2}}-9\left( -1 \right)-2=2\].
For $x=-3$, the value of \[y=f\left( -3 \right)=-{{\left( -3 \right)}^{3}}-6{{\left( -3 \right)}^{2}}-9\left( -3 \right)-2=-2\].
At $x=-1$, ${{f}^{''}}\left( -1 \right)=-6<0$. The point $\left( -1,2 \right)$ is maxima. This point gives the upper bound where $f\left( -1 \right)=-{{\left( -1 \right)}^{3}}-6{{\left( -1 \right)}^{2}}-9\left( -1 \right)-2=2$.
Note: We also can find which point is maxima and minima by finding ${{f}^{''}}\left( x \right)=\dfrac{d}{dx}\left[ {{f}^{'}}\left( x \right) \right]$. If for $x=a,b$, we find ${{f}^{''}}\left( x \right)$ being negative value then the point is maxima and ${{f}^{''}}\left( x \right)$ being positive value then the point is minima.
For ${{f}^{'}}\left( x \right)=-3{{x}^{2}}-12x-9$, we get ${{f}^{''}}\left( x \right)=-6x-12$.
At $x=-1$, ${{f}^{''}}\left( -1 \right)=-6<0$. The point $\left( -1,2 \right)$ is maxima.
At $x=-3$, ${{f}^{''}}\left( -3 \right)=6>0$. The point $\left( -3,-2 \right)$ is minima.
Complete step by step solution:
We know that the upper bound of a polynomial is the maximum value of the polynomial for any point in its domain.
We take an arbitrary polynomial $f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2$.
We need to find the upper bound of the function $f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2$.
To find the extremum points we need to find the slope of the function and also the value of the point where the slope will be 0.
Extremum points in a curve have slope value 0.
The slope of the function $f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2$ can be found from the derivative of the function ${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]$.
We differentiate both sides of the function $f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2$ with respect to $x$.
$\begin{align}
& f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2 \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ -{{x}^{3}}-6{{x}^{2}}-9x-2 \right] \\
\end{align}$.
We know that the differentiation form for ${{n}^{th}}$ power of $x$ is $\dfrac{d}{dx}\left[ {{x}^{n}} \right]=n{{x}^{n-1}}$.
Therefore, ${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( -{{x}^{3}} \right)+\dfrac{d}{dx}\left( -6{{x}^{2}} \right)+\dfrac{d}{dx}\left( -9x \right)+\dfrac{d}{dx}\left( -2 \right)=-3{{x}^{2}}-12x-9$.
To find the $x$ coordinates of the extremum point we take $-3{{x}^{2}}-12x-9=0$.
Solving the given quadratic equation
$\begin{align}
& -3{{x}^{2}}-12x-9=0 \\
& \Rightarrow {{x}^{2}}+4x+3=0 \\
\end{align}$
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}+4x+3=0$. The values of $a,b,c$ is $1,4,3$ respectively.
We put the values and get $x$ as $x=\dfrac{-4\pm \sqrt{{{4}^{2}}-4\times 1\times 3}}{2\times 1}=\dfrac{-4\pm \sqrt{4}}{2}=\dfrac{-4\pm 2}{2}=-1,-3$.
Therefore, from the value of the $x$ coordinates of the extremum points, we find their $y$ coordinates.
We put values of $x=-1,-3$ in $f\left( x \right)=-{{x}^{3}}-6{{x}^{2}}-9x-2$.
For $x=-1$, the value of \[y=f\left( -1 \right)=-{{\left( -1 \right)}^{3}}-6{{\left( -1 \right)}^{2}}-9\left( -1 \right)-2=2\].
For $x=-3$, the value of \[y=f\left( -3 \right)=-{{\left( -3 \right)}^{3}}-6{{\left( -3 \right)}^{2}}-9\left( -3 \right)-2=-2\].
At $x=-1$, ${{f}^{''}}\left( -1 \right)=-6<0$. The point $\left( -1,2 \right)$ is maxima. This point gives the upper bound where $f\left( -1 \right)=-{{\left( -1 \right)}^{3}}-6{{\left( -1 \right)}^{2}}-9\left( -1 \right)-2=2$.
Note: We also can find which point is maxima and minima by finding ${{f}^{''}}\left( x \right)=\dfrac{d}{dx}\left[ {{f}^{'}}\left( x \right) \right]$. If for $x=a,b$, we find ${{f}^{''}}\left( x \right)$ being negative value then the point is maxima and ${{f}^{''}}\left( x \right)$ being positive value then the point is minima.
For ${{f}^{'}}\left( x \right)=-3{{x}^{2}}-12x-9$, we get ${{f}^{''}}\left( x \right)=-6x-12$.
At $x=-1$, ${{f}^{''}}\left( -1 \right)=-6<0$. The point $\left( -1,2 \right)$ is maxima.
At $x=-3$, ${{f}^{''}}\left( -3 \right)=6>0$. The point $\left( -3,-2 \right)$ is minima.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

