
Find the third vertex of a triangle if two of its vertices are at \[\left( { - 2,4} \right){\text{ and }}\left( {7, - 1} \right)\] and centroid at \[\left( {3,2} \right)\].
Answer
518.4k+ views
Hint: First of all, consider the unknown point as a variable. Then find the centroid of the triangle by using the centroid formula. As we have all points except the third vertex of the triangle, by equating them we will get the coordinates of the third vertex of the triangle. So, use this method to reach the solution of the given problem.
Complete step-by-step solution -
Let the given points are \[A{\text{ }}\left( {{x_1},{y_1}} \right) = \left( { - 2,4} \right)\] and \[B{\text{ }}\left( {{x_2},{y_2}} \right) = \left( {7, - 1} \right)\]
And the centroid is \[G{\text{ }}\left( {x,y} \right) = \left( {3,2} \right)\]
Consider the required point as \[C{\text{ }}\left( {{x_3},{y_3}} \right)\]
The diagram of the triangle with centroid is given below:
We know that the centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula \[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\].
\[ \Rightarrow \left( {3,2} \right) = \left( {\dfrac{{ - 2 + 7 + {x_3}}}{3},\dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}} \right)\]
Equating the terms of x-coordinate, we get
$\Rightarrow 3 = \dfrac{{ - 2 + 7 + {x_3}}}{3}$
$ \Rightarrow - 2 + 7 + {x_3} = 3 \times 3$
$ \Rightarrow 5 + {x_3} = 9 $
$\therefore {x_3} = 9 - 5 = 4$
Equating the terms of y-coordinate, we get
$\Rightarrow 2 = \dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}$
$\Rightarrow 4 + \left( { - 1} \right) + {y_3} = 2 \times 3 $
$\Rightarrow 3 + {y_3} = 6$
$\therefore {y_3} = 9 - 3 = 3$
Thus, the third vertex of the triangle is \[C{\text{ }}\left( {{x_3},{y_3}} \right) = \left( {4,3} \right)\].
Note: The centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula\[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\]. Or else, we can the third vertex directly by using the formula \[{\text{C }} = 3{\text{G}} - \left( {{\text{A}} + {\text{B}}} \right)\].
Complete step-by-step solution -
Let the given points are \[A{\text{ }}\left( {{x_1},{y_1}} \right) = \left( { - 2,4} \right)\] and \[B{\text{ }}\left( {{x_2},{y_2}} \right) = \left( {7, - 1} \right)\]
And the centroid is \[G{\text{ }}\left( {x,y} \right) = \left( {3,2} \right)\]
Consider the required point as \[C{\text{ }}\left( {{x_3},{y_3}} \right)\]
The diagram of the triangle with centroid is given below:
We know that the centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula \[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\].
\[ \Rightarrow \left( {3,2} \right) = \left( {\dfrac{{ - 2 + 7 + {x_3}}}{3},\dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}} \right)\]
Equating the terms of x-coordinate, we get
$\Rightarrow 3 = \dfrac{{ - 2 + 7 + {x_3}}}{3}$
$ \Rightarrow - 2 + 7 + {x_3} = 3 \times 3$
$ \Rightarrow 5 + {x_3} = 9 $
$\therefore {x_3} = 9 - 5 = 4$
Equating the terms of y-coordinate, we get
$\Rightarrow 2 = \dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}$
$\Rightarrow 4 + \left( { - 1} \right) + {y_3} = 2 \times 3 $
$\Rightarrow 3 + {y_3} = 6$
$\therefore {y_3} = 9 - 3 = 3$
Thus, the third vertex of the triangle is \[C{\text{ }}\left( {{x_3},{y_3}} \right) = \left( {4,3} \right)\].
Note: The centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula\[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\]. Or else, we can the third vertex directly by using the formula \[{\text{C }} = 3{\text{G}} - \left( {{\text{A}} + {\text{B}}} \right)\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
