
Find the third vertex of a triangle if two of its vertices are at \[\left( { - 2,4} \right){\text{ and }}\left( {7, - 1} \right)\] and centroid at \[\left( {3,2} \right)\].
Answer
599.7k+ views
Hint: First of all, consider the unknown point as a variable. Then find the centroid of the triangle by using the centroid formula. As we have all points except the third vertex of the triangle, by equating them we will get the coordinates of the third vertex of the triangle. So, use this method to reach the solution of the given problem.
Complete step-by-step solution -
Let the given points are \[A{\text{ }}\left( {{x_1},{y_1}} \right) = \left( { - 2,4} \right)\] and \[B{\text{ }}\left( {{x_2},{y_2}} \right) = \left( {7, - 1} \right)\]
And the centroid is \[G{\text{ }}\left( {x,y} \right) = \left( {3,2} \right)\]
Consider the required point as \[C{\text{ }}\left( {{x_3},{y_3}} \right)\]
The diagram of the triangle with centroid is given below:
We know that the centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula \[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\].
\[ \Rightarrow \left( {3,2} \right) = \left( {\dfrac{{ - 2 + 7 + {x_3}}}{3},\dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}} \right)\]
Equating the terms of x-coordinate, we get
$\Rightarrow 3 = \dfrac{{ - 2 + 7 + {x_3}}}{3}$
$ \Rightarrow - 2 + 7 + {x_3} = 3 \times 3$
$ \Rightarrow 5 + {x_3} = 9 $
$\therefore {x_3} = 9 - 5 = 4$
Equating the terms of y-coordinate, we get
$\Rightarrow 2 = \dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}$
$\Rightarrow 4 + \left( { - 1} \right) + {y_3} = 2 \times 3 $
$\Rightarrow 3 + {y_3} = 6$
$\therefore {y_3} = 9 - 3 = 3$
Thus, the third vertex of the triangle is \[C{\text{ }}\left( {{x_3},{y_3}} \right) = \left( {4,3} \right)\].
Note: The centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula\[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\]. Or else, we can the third vertex directly by using the formula \[{\text{C }} = 3{\text{G}} - \left( {{\text{A}} + {\text{B}}} \right)\].
Complete step-by-step solution -
Let the given points are \[A{\text{ }}\left( {{x_1},{y_1}} \right) = \left( { - 2,4} \right)\] and \[B{\text{ }}\left( {{x_2},{y_2}} \right) = \left( {7, - 1} \right)\]
And the centroid is \[G{\text{ }}\left( {x,y} \right) = \left( {3,2} \right)\]
Consider the required point as \[C{\text{ }}\left( {{x_3},{y_3}} \right)\]
The diagram of the triangle with centroid is given below:
We know that the centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula \[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\].
\[ \Rightarrow \left( {3,2} \right) = \left( {\dfrac{{ - 2 + 7 + {x_3}}}{3},\dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}} \right)\]
Equating the terms of x-coordinate, we get
$\Rightarrow 3 = \dfrac{{ - 2 + 7 + {x_3}}}{3}$
$ \Rightarrow - 2 + 7 + {x_3} = 3 \times 3$
$ \Rightarrow 5 + {x_3} = 9 $
$\therefore {x_3} = 9 - 5 = 4$
Equating the terms of y-coordinate, we get
$\Rightarrow 2 = \dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}$
$\Rightarrow 4 + \left( { - 1} \right) + {y_3} = 2 \times 3 $
$\Rightarrow 3 + {y_3} = 6$
$\therefore {y_3} = 9 - 3 = 3$
Thus, the third vertex of the triangle is \[C{\text{ }}\left( {{x_3},{y_3}} \right) = \left( {4,3} \right)\].
Note: The centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula\[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\]. Or else, we can the third vertex directly by using the formula \[{\text{C }} = 3{\text{G}} - \left( {{\text{A}} + {\text{B}}} \right)\].
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

