
Find the third vertex of a triangle if two of its vertices are at \[\left( { - 2,4} \right){\text{ and }}\left( {7, - 1} \right)\] and centroid at \[\left( {3,2} \right)\].
Answer
616.8k+ views
Hint: First of all, consider the unknown point as a variable. Then find the centroid of the triangle by using the centroid formula. As we have all points except the third vertex of the triangle, by equating them we will get the coordinates of the third vertex of the triangle. So, use this method to reach the solution of the given problem.
Complete step-by-step solution -
Let the given points are \[A{\text{ }}\left( {{x_1},{y_1}} \right) = \left( { - 2,4} \right)\] and \[B{\text{ }}\left( {{x_2},{y_2}} \right) = \left( {7, - 1} \right)\]
And the centroid is \[G{\text{ }}\left( {x,y} \right) = \left( {3,2} \right)\]
Consider the required point as \[C{\text{ }}\left( {{x_3},{y_3}} \right)\]
The diagram of the triangle with centroid is given below:
We know that the centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula \[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\].
\[ \Rightarrow \left( {3,2} \right) = \left( {\dfrac{{ - 2 + 7 + {x_3}}}{3},\dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}} \right)\]
Equating the terms of x-coordinate, we get
$\Rightarrow 3 = \dfrac{{ - 2 + 7 + {x_3}}}{3}$
$ \Rightarrow - 2 + 7 + {x_3} = 3 \times 3$
$ \Rightarrow 5 + {x_3} = 9 $
$\therefore {x_3} = 9 - 5 = 4$
Equating the terms of y-coordinate, we get
$\Rightarrow 2 = \dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}$
$\Rightarrow 4 + \left( { - 1} \right) + {y_3} = 2 \times 3 $
$\Rightarrow 3 + {y_3} = 6$
$\therefore {y_3} = 9 - 3 = 3$
Thus, the third vertex of the triangle is \[C{\text{ }}\left( {{x_3},{y_3}} \right) = \left( {4,3} \right)\].
Note: The centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula\[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\]. Or else, we can the third vertex directly by using the formula \[{\text{C }} = 3{\text{G}} - \left( {{\text{A}} + {\text{B}}} \right)\].
Complete step-by-step solution -
Let the given points are \[A{\text{ }}\left( {{x_1},{y_1}} \right) = \left( { - 2,4} \right)\] and \[B{\text{ }}\left( {{x_2},{y_2}} \right) = \left( {7, - 1} \right)\]
And the centroid is \[G{\text{ }}\left( {x,y} \right) = \left( {3,2} \right)\]
Consider the required point as \[C{\text{ }}\left( {{x_3},{y_3}} \right)\]
The diagram of the triangle with centroid is given below:
We know that the centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula \[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\].
\[ \Rightarrow \left( {3,2} \right) = \left( {\dfrac{{ - 2 + 7 + {x_3}}}{3},\dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}} \right)\]
Equating the terms of x-coordinate, we get
$\Rightarrow 3 = \dfrac{{ - 2 + 7 + {x_3}}}{3}$
$ \Rightarrow - 2 + 7 + {x_3} = 3 \times 3$
$ \Rightarrow 5 + {x_3} = 9 $
$\therefore {x_3} = 9 - 5 = 4$
Equating the terms of y-coordinate, we get
$\Rightarrow 2 = \dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}$
$\Rightarrow 4 + \left( { - 1} \right) + {y_3} = 2 \times 3 $
$\Rightarrow 3 + {y_3} = 6$
$\therefore {y_3} = 9 - 3 = 3$
Thus, the third vertex of the triangle is \[C{\text{ }}\left( {{x_3},{y_3}} \right) = \left( {4,3} \right)\].
Note: The centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula\[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\]. Or else, we can the third vertex directly by using the formula \[{\text{C }} = 3{\text{G}} - \left( {{\text{A}} + {\text{B}}} \right)\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

