
How do you find the Taylor polynomial of degree $n = 4$ for $x$ near the point $a = \pi $ for the function $\cos x$?
Answer
547.8k+ views
Hint: We need to calculate the derivatives of the above function at $x = \pi $. Calculate $f'\left( x \right)$, $f''\left( x \right)$, $f'''\left( x \right)$, ${f^{\left( 4 \right)}}\left( x \right)$ at $x = \pi $. Next, put $n = 4$ and $a = \pi $in the Taylor polynomial of degree $n$. Then, put the value of $f\left( \pi \right)$, $f'\left( \pi \right),f''\left( \pi \right),f'''\left( \pi \right),{f^{\left( 4 \right)}}\left( \pi \right)$.
Formula used:
The Taylor polynomial of degree $n$. Approximating $f\left( x \right)$ for $x$ near $a$ is given by
$f\left( x \right) \approx {P_n}\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + ... + \dfrac{{{f^{\left( n \right)}}\left( a \right)}}{{n!}}{\left( {x - a} \right)^n}$
We call ${P_n}\left( x \right)$ the Taylor polynomial of degree $n$ centered at $x = a$ or the Taylor polynomial about $x = a$.
Complete step by step answer:
Function $f\left( x \right)$ is given as
$f\left( x \right) = \cos x$
And
$n = 4$
$a = \pi $
Now we need to calculate the derivatives of the above function at $x = \pi $.
So, first differentiate $f$ with respect to $x$.
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {\cos x} \right)$
Now, use property that differentiation of $\cos x$ with respect to $x$ is $ - \sin x$,
i.e., $\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$.
So, $f'\left( x \right) = - \sin x$
Now, calculate $f'\left( x \right)$ at $x = \pi $.
$f'\left( \pi \right) = - \sin \pi $
Since the exact value of $\sin \pi $ is $0$, i.e., $\sin \pi = 0$.
Thus, $f'\left( \pi \right) = 0$…(i)
Now, differentiate $f'$ with respect to $x$.
$f''\left( x \right) = - \dfrac{d}{{dx}}\left( {\sin x} \right)$
Now, use property that differentiation of $\sin x$ with respect to $x$ is $\cos x$,
i.e., $\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x$.
So, $f''\left( x \right) = - \cos x$
Now, calculate $f''\left( x \right)$ at $x = \pi $.
$f''\left( \pi \right) = - \cos \pi $
Since the exact value of $\cos \pi $ is $ - 1$, i.e., $\cos \pi = - 1$.
Thus, $f''\left( \pi \right) = 1$…(ii)
Now, differentiate \[f''\] with respect to $x$.
$f'''\left( x \right) = - \dfrac{d}{{dx}}\left( {\cos x} \right)$
Now, use property that differentiation of $\cos x$ with respect to $x$ is $ - \sin x$,
i.e., $\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$.
So, $f'''\left( x \right) = \sin x$
Now, calculate $f'''\left( x \right)$ at $x = \pi $.
$f'''\left( \pi \right) = \sin \pi $
Since the exact value of $\sin \pi $ is $0$, i.e., $\sin \pi = 0$.
Thus, $f'''\left( \pi \right) = 0$…(iii)
Now, differentiate ${f^{\left( 3 \right)}}$ with respect to $x$.
${f^{\left( 4 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {\sin x} \right)$
Now, use property that differentiation of $\sin x$ with respect to $x$ is $\cos x$,
i.e., $\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x$.
So, ${f^{\left( 4 \right)}}\left( x \right) = \cos x$
Now, calculate ${f^{\left( 4 \right)}}\left( x \right)$ at $x = \pi $.
${f^{\left( 4 \right)}}\left( \pi \right) = \cos \pi $
Since the exact value of $\cos \pi $ is $ - 1$, i.e., $\cos \pi = - 1$.
Thus, ${f^{\left( 4 \right)}}\left( \pi \right) = - 1$…(iv)
Since, the Taylor polynomial of degree $n$. Approximating $f\left( x \right)$ for $x$ near $a$ is given by
$f\left( x \right) \approx {P_n}\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + ... + \dfrac{{{f^{\left( n \right)}}\left( a \right)}}{{n!}}{\left( {x - a} \right)^n}$…(v)
We call ${P_n}\left( x \right)$ the Taylor polynomial of degree $n$ centered at $x = a$ or the Taylor polynomial about $x = a$.
Put $n = 4$ in equation (v).
$f\left( x \right) \approx {P_4}\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \dfrac{{{f^{\left( 4 \right)}}\left( a \right)}}{{4!}}{\left( {x - a} \right)^4}$
Now, put $a = \pi $ in above equation.
$ \Rightarrow f\left( x \right) \approx {P_4}\left( x \right) = f\left( \pi \right) + f'\left( \pi \right)\left( {x - \pi } \right) + \dfrac{{f''\left( \pi \right)}}{{2!}}{\left( {x - \pi } \right)^2} + \dfrac{{f'''\left( \pi \right)}}{{3!}}{\left( {x - \pi } \right)^3} + \dfrac{{{f^{\left( 4 \right)}}\left( \pi \right)}}{{4!}}{\left( {x - \pi } \right)^4}$
Put the value of $f'\left( \pi \right),f''\left( \pi \right),f'''\left( \pi \right),{f^{\left( 4 \right)}}\left( \pi \right)$ from equation (i), (ii), (iii) and (iv) respectively.
$ \Rightarrow f\left( x \right) \approx {P_4}\left( x \right) = f\left( \pi \right) + \left( 0 \right)\left( {x - \pi } \right) + \dfrac{1}{{2!}}{\left( {x - \pi } \right)^2} + \dfrac{0}{{3!}}{\left( {x - \pi } \right)^3} + \dfrac{{\left( { - 1} \right)}}{{4!}}{\left( {x - \pi } \right)^4}$
Now, calculate $f\left( \pi \right)$ using $\cos \pi = - 1$.
Since, $f\left( x \right) = \cos x$
Thus, $f\left( \pi \right) = - 1$.
$ \Rightarrow f\left( x \right) \approx {P_4}\left( x \right) = - 1 + \dfrac{1}{{2!}}{\left( {x - \pi } \right)^2} - \dfrac{1}{{4!}}{\left( {x - \pi } \right)^4}$
It can be written as
$ \Rightarrow f\left( x \right) \approx {P_4}\left( x \right) = - 1 + \dfrac{{{{\left( {x - \pi } \right)}^2}}}{2} - \dfrac{{{{\left( {x - \pi } \right)}^4}}}{{24}}$
Therefore, the Taylor polynomial of degree $n = 4$ for $x$ near the point $a = \pi $ for the function $\cos x$ is $ - 1 + \dfrac{{{{\left( {x - \pi } \right)}^2}}}{2} - \dfrac{{{{\left( {x - \pi } \right)}^4}}}{{24}}$.
Note: We can check $ - 1 + \dfrac{{{{\left( {x - \pi } \right)}^2}}}{2} - \dfrac{{{{\left( {x - \pi } \right)}^4}}}{{24}}$ is the Taylor polynomial of degree $n = 4$ for $x$ near the point $a = \pi $ for the function $\cos x$ by plotting these on graph paper.
Final solution: Therefore, the Taylor polynomial of degree $n = 4$ for $x$ near the point $a = \pi $ for the function $\cos x$ is $ - 1 + \dfrac{{{{\left( {x - \pi } \right)}^2}}}{2} - \dfrac{{{{\left( {x - \pi } \right)}^4}}}{{24}}$.
Formula used:
The Taylor polynomial of degree $n$. Approximating $f\left( x \right)$ for $x$ near $a$ is given by
$f\left( x \right) \approx {P_n}\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + ... + \dfrac{{{f^{\left( n \right)}}\left( a \right)}}{{n!}}{\left( {x - a} \right)^n}$
We call ${P_n}\left( x \right)$ the Taylor polynomial of degree $n$ centered at $x = a$ or the Taylor polynomial about $x = a$.
Complete step by step answer:
Function $f\left( x \right)$ is given as
$f\left( x \right) = \cos x$
And
$n = 4$
$a = \pi $
Now we need to calculate the derivatives of the above function at $x = \pi $.
So, first differentiate $f$ with respect to $x$.
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {\cos x} \right)$
Now, use property that differentiation of $\cos x$ with respect to $x$ is $ - \sin x$,
i.e., $\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$.
So, $f'\left( x \right) = - \sin x$
Now, calculate $f'\left( x \right)$ at $x = \pi $.
$f'\left( \pi \right) = - \sin \pi $
Since the exact value of $\sin \pi $ is $0$, i.e., $\sin \pi = 0$.
Thus, $f'\left( \pi \right) = 0$…(i)
Now, differentiate $f'$ with respect to $x$.
$f''\left( x \right) = - \dfrac{d}{{dx}}\left( {\sin x} \right)$
Now, use property that differentiation of $\sin x$ with respect to $x$ is $\cos x$,
i.e., $\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x$.
So, $f''\left( x \right) = - \cos x$
Now, calculate $f''\left( x \right)$ at $x = \pi $.
$f''\left( \pi \right) = - \cos \pi $
Since the exact value of $\cos \pi $ is $ - 1$, i.e., $\cos \pi = - 1$.
Thus, $f''\left( \pi \right) = 1$…(ii)
Now, differentiate \[f''\] with respect to $x$.
$f'''\left( x \right) = - \dfrac{d}{{dx}}\left( {\cos x} \right)$
Now, use property that differentiation of $\cos x$ with respect to $x$ is $ - \sin x$,
i.e., $\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$.
So, $f'''\left( x \right) = \sin x$
Now, calculate $f'''\left( x \right)$ at $x = \pi $.
$f'''\left( \pi \right) = \sin \pi $
Since the exact value of $\sin \pi $ is $0$, i.e., $\sin \pi = 0$.
Thus, $f'''\left( \pi \right) = 0$…(iii)
Now, differentiate ${f^{\left( 3 \right)}}$ with respect to $x$.
${f^{\left( 4 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {\sin x} \right)$
Now, use property that differentiation of $\sin x$ with respect to $x$ is $\cos x$,
i.e., $\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x$.
So, ${f^{\left( 4 \right)}}\left( x \right) = \cos x$
Now, calculate ${f^{\left( 4 \right)}}\left( x \right)$ at $x = \pi $.
${f^{\left( 4 \right)}}\left( \pi \right) = \cos \pi $
Since the exact value of $\cos \pi $ is $ - 1$, i.e., $\cos \pi = - 1$.
Thus, ${f^{\left( 4 \right)}}\left( \pi \right) = - 1$…(iv)
Since, the Taylor polynomial of degree $n$. Approximating $f\left( x \right)$ for $x$ near $a$ is given by
$f\left( x \right) \approx {P_n}\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + ... + \dfrac{{{f^{\left( n \right)}}\left( a \right)}}{{n!}}{\left( {x - a} \right)^n}$…(v)
We call ${P_n}\left( x \right)$ the Taylor polynomial of degree $n$ centered at $x = a$ or the Taylor polynomial about $x = a$.
Put $n = 4$ in equation (v).
$f\left( x \right) \approx {P_4}\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \dfrac{{{f^{\left( 4 \right)}}\left( a \right)}}{{4!}}{\left( {x - a} \right)^4}$
Now, put $a = \pi $ in above equation.
$ \Rightarrow f\left( x \right) \approx {P_4}\left( x \right) = f\left( \pi \right) + f'\left( \pi \right)\left( {x - \pi } \right) + \dfrac{{f''\left( \pi \right)}}{{2!}}{\left( {x - \pi } \right)^2} + \dfrac{{f'''\left( \pi \right)}}{{3!}}{\left( {x - \pi } \right)^3} + \dfrac{{{f^{\left( 4 \right)}}\left( \pi \right)}}{{4!}}{\left( {x - \pi } \right)^4}$
Put the value of $f'\left( \pi \right),f''\left( \pi \right),f'''\left( \pi \right),{f^{\left( 4 \right)}}\left( \pi \right)$ from equation (i), (ii), (iii) and (iv) respectively.
$ \Rightarrow f\left( x \right) \approx {P_4}\left( x \right) = f\left( \pi \right) + \left( 0 \right)\left( {x - \pi } \right) + \dfrac{1}{{2!}}{\left( {x - \pi } \right)^2} + \dfrac{0}{{3!}}{\left( {x - \pi } \right)^3} + \dfrac{{\left( { - 1} \right)}}{{4!}}{\left( {x - \pi } \right)^4}$
Now, calculate $f\left( \pi \right)$ using $\cos \pi = - 1$.
Since, $f\left( x \right) = \cos x$
Thus, $f\left( \pi \right) = - 1$.
$ \Rightarrow f\left( x \right) \approx {P_4}\left( x \right) = - 1 + \dfrac{1}{{2!}}{\left( {x - \pi } \right)^2} - \dfrac{1}{{4!}}{\left( {x - \pi } \right)^4}$
It can be written as
$ \Rightarrow f\left( x \right) \approx {P_4}\left( x \right) = - 1 + \dfrac{{{{\left( {x - \pi } \right)}^2}}}{2} - \dfrac{{{{\left( {x - \pi } \right)}^4}}}{{24}}$
Therefore, the Taylor polynomial of degree $n = 4$ for $x$ near the point $a = \pi $ for the function $\cos x$ is $ - 1 + \dfrac{{{{\left( {x - \pi } \right)}^2}}}{2} - \dfrac{{{{\left( {x - \pi } \right)}^4}}}{{24}}$.
Note: We can check $ - 1 + \dfrac{{{{\left( {x - \pi } \right)}^2}}}{2} - \dfrac{{{{\left( {x - \pi } \right)}^4}}}{{24}}$ is the Taylor polynomial of degree $n = 4$ for $x$ near the point $a = \pi $ for the function $\cos x$ by plotting these on graph paper.
Final solution: Therefore, the Taylor polynomial of degree $n = 4$ for $x$ near the point $a = \pi $ for the function $\cos x$ is $ - 1 + \dfrac{{{{\left( {x - \pi } \right)}^2}}}{2} - \dfrac{{{{\left( {x - \pi } \right)}^4}}}{{24}}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

