
Find the sum to n terms of the series: \[5 + 11 + 19 + 29 + 41 + ...........\]
Answer
608.1k+ views
Hint: This is not an AP or GP. It is a special series. Add 0 in the first term then subtract new series with the given series. You will find an AP is produced and move along with it and you will find the required solution.
Complete step by step answer:
Let
\[\begin{array}{l}
{S_n} = 5 + 11 + 19 + 29 + 41 + ...... + {a_{n - 1}} + {a_n}\\
{S_n} = 0 + 5 + 11 + 19 + 29 + 41 + ....... + {a_{n - 2}} + {a_{n - 1}} + {a_n}
\end{array}\]
Now subtract both of them we will get,
\[\begin{array}{l}
\Rightarrow {S_n} - {S_n} = 5 - 0 + [(11 - 5) + (19 - 11) + (29 - 19) + ....({a_{n - 1}} - {a_{n - 2}}) + ({a_n} - {a_{n - 1}})] - {a_n}\\
\Rightarrow 0 = 5 + [6 + 8 + 10 + 12 + .....{a_{n - 1}}] - {a_n}\\
\Rightarrow {a_n} = 5 + [6 + 8 + 10 + 12 + .....{(n - 1)^{th}}term]...............................(i)
\end{array}\]
Now it is clearly seen that \[6,8,10,12,.....{(n - 1)^{th}}term\]
We know that the general equation of an AP is given by \[{a_n} = a + (n - 1)d\]
Where a is the first term, n is the number of term and d is the common difference
Here in this case \[a = 6,d = 2\]
We know that sum of n terms of an AP is given by \[\dfrac{n}{2}\{ 2a + (n - 1)d\} \]
Now putting \[n = n - 1,a = 6\& d = 2\] we get
\[\begin{array}{l}
= \dfrac{{n - 1}}{2}[2(6) + \{ (n - 1) - 1\} 2]\\
= \dfrac{{n - 1}}{2}[12 + (n - 1 - 1)2]\\
= \dfrac{{n - 1}}{2}[12 + (n - 2)2]\\
= \dfrac{{n - 1}}{2}[12 + 2n - 4]\\
= \dfrac{{n - 1}}{2}[8 + 2n]\\
= \dfrac{{n - 1}}{2} \times 2[4 + n]\\
= (n - 1)(n + 4)
\end{array}\]
Now we can put this in equation (i) we get
\[\begin{array}{l}
\Rightarrow {a_n} = 5 + (n - 1)(n + 4)\\
\Rightarrow {a_n} = 5 + n(n + 4) - (n + 4)\\
\Rightarrow {a_n} = 5 + {n^2} + 4n - n - 4\\
\Rightarrow {a_n} = {n^2} + 3n + 1
\end{array}\]
Now,
\[\begin{array}{l}
{S_n} = \sum\limits_{n = 1}^n {{a_n}} \\
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {{n^2} + 3n + 1} \\
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n {3n} + \sum\limits_{n = 1}^n 1 \\
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {{n^2}} + 3\sum\limits_{n = 1}^n n + \sum\limits_{n = 1}^n 1
\end{array}\]
We know that sum of all \[n \& {n^2}\] terms is given by \[\dfrac{{n(n + 1)}}{2}\& \dfrac{{n(n + 1)(2n + 1)}}{6}\] and also sum of n 1’s will naturally be n only.
\[\begin{array}{l}
\therefore \dfrac{{n(n + 1)(2n + 1)}}{6} + \left( {\dfrac{{n(n + 1)}}{2}} \right) + n\\
= \dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{3}{2}n(n + 1) + n\\
= \dfrac{{n(n + 1)(2n + 1) + 9(n + 1) + 6n}}{6}\\
= n\left( {\dfrac{{(n + 1)(2n + 1) + 9(n + 1) + 6}}{6}} \right)\\
= n\left( {\dfrac{{2{n^2} + 2n + n + 1 + 9n + 9 + 6}}{6}} \right)\\
= n\left( {\dfrac{{2{n^2} + 12n + 16}}{6}} \right)\\
= n\left( {\dfrac{{2({n^2} + 6n + 8)}}{6}} \right)\\
= \dfrac{n}{3}({n^2} + 6n + 8)\\
= \dfrac{n}{3}[n(n + 4) + 2(n + 4)]\\
= \dfrac{n}{3}[(n + 2)(n + 4)]\\
= \dfrac{{n(n + 2)(n + 4)}}{3}
\end{array}\]
Therefore the required sum is \[{\dfrac{{n(n + 2)(n + 4)}}{3}}\]
Note: The key step here was to find the AP from the given series and also remember the summation of \[n,{n^2}\& {n^3}\] which is \[\dfrac{{n(n + 1)}}{2},\dfrac{{n(n + 1)(2n + 1)}}{6}\& {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2}\] respectively. These three are often used while trying to solve problems like this.
Complete step by step answer:
Let
\[\begin{array}{l}
{S_n} = 5 + 11 + 19 + 29 + 41 + ...... + {a_{n - 1}} + {a_n}\\
{S_n} = 0 + 5 + 11 + 19 + 29 + 41 + ....... + {a_{n - 2}} + {a_{n - 1}} + {a_n}
\end{array}\]
Now subtract both of them we will get,
\[\begin{array}{l}
\Rightarrow {S_n} - {S_n} = 5 - 0 + [(11 - 5) + (19 - 11) + (29 - 19) + ....({a_{n - 1}} - {a_{n - 2}}) + ({a_n} - {a_{n - 1}})] - {a_n}\\
\Rightarrow 0 = 5 + [6 + 8 + 10 + 12 + .....{a_{n - 1}}] - {a_n}\\
\Rightarrow {a_n} = 5 + [6 + 8 + 10 + 12 + .....{(n - 1)^{th}}term]...............................(i)
\end{array}\]
Now it is clearly seen that \[6,8,10,12,.....{(n - 1)^{th}}term\]
We know that the general equation of an AP is given by \[{a_n} = a + (n - 1)d\]
Where a is the first term, n is the number of term and d is the common difference
Here in this case \[a = 6,d = 2\]
We know that sum of n terms of an AP is given by \[\dfrac{n}{2}\{ 2a + (n - 1)d\} \]
Now putting \[n = n - 1,a = 6\& d = 2\] we get
\[\begin{array}{l}
= \dfrac{{n - 1}}{2}[2(6) + \{ (n - 1) - 1\} 2]\\
= \dfrac{{n - 1}}{2}[12 + (n - 1 - 1)2]\\
= \dfrac{{n - 1}}{2}[12 + (n - 2)2]\\
= \dfrac{{n - 1}}{2}[12 + 2n - 4]\\
= \dfrac{{n - 1}}{2}[8 + 2n]\\
= \dfrac{{n - 1}}{2} \times 2[4 + n]\\
= (n - 1)(n + 4)
\end{array}\]
Now we can put this in equation (i) we get
\[\begin{array}{l}
\Rightarrow {a_n} = 5 + (n - 1)(n + 4)\\
\Rightarrow {a_n} = 5 + n(n + 4) - (n + 4)\\
\Rightarrow {a_n} = 5 + {n^2} + 4n - n - 4\\
\Rightarrow {a_n} = {n^2} + 3n + 1
\end{array}\]
Now,
\[\begin{array}{l}
{S_n} = \sum\limits_{n = 1}^n {{a_n}} \\
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {{n^2} + 3n + 1} \\
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {{n^2}} + \sum\limits_{n = 1}^n {3n} + \sum\limits_{n = 1}^n 1 \\
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {{n^2}} + 3\sum\limits_{n = 1}^n n + \sum\limits_{n = 1}^n 1
\end{array}\]
We know that sum of all \[n \& {n^2}\] terms is given by \[\dfrac{{n(n + 1)}}{2}\& \dfrac{{n(n + 1)(2n + 1)}}{6}\] and also sum of n 1’s will naturally be n only.
\[\begin{array}{l}
\therefore \dfrac{{n(n + 1)(2n + 1)}}{6} + \left( {\dfrac{{n(n + 1)}}{2}} \right) + n\\
= \dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{3}{2}n(n + 1) + n\\
= \dfrac{{n(n + 1)(2n + 1) + 9(n + 1) + 6n}}{6}\\
= n\left( {\dfrac{{(n + 1)(2n + 1) + 9(n + 1) + 6}}{6}} \right)\\
= n\left( {\dfrac{{2{n^2} + 2n + n + 1 + 9n + 9 + 6}}{6}} \right)\\
= n\left( {\dfrac{{2{n^2} + 12n + 16}}{6}} \right)\\
= n\left( {\dfrac{{2({n^2} + 6n + 8)}}{6}} \right)\\
= \dfrac{n}{3}({n^2} + 6n + 8)\\
= \dfrac{n}{3}[n(n + 4) + 2(n + 4)]\\
= \dfrac{n}{3}[(n + 2)(n + 4)]\\
= \dfrac{{n(n + 2)(n + 4)}}{3}
\end{array}\]
Therefore the required sum is \[{\dfrac{{n(n + 2)(n + 4)}}{3}}\]
Note: The key step here was to find the AP from the given series and also remember the summation of \[n,{n^2}\& {n^3}\] which is \[\dfrac{{n(n + 1)}}{2},\dfrac{{n(n + 1)(2n + 1)}}{6}\& {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2}\] respectively. These three are often used while trying to solve problems like this.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

