Answer
Verified
456.6k+ views
Hint: An itemized collection of terms in which repetition of any sort of series are allowed is known as sequence.
Sum of n terms of such sequence means adding all the ‘n’ terms.
It could be done with various algebraic expressions
Here, \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
Further the concept of A.P & G.P series are used to solve such algebraic expressions
An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant. If the initial term of A.P is a, and common difference is ‘d’, then nth terms of sequence is
\[{a^n} = a + (n - 1)d,\] where n \[ = \] no. of terms.
Sum of A.P is given by \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right],\] where n \[ = \] no. of terms, a \[ = \] first term, d\[ = \]common difference.
Geometric sequence has a common ratio.
The formula for the nth term is:
\[{a_n} = a{r^{n - 1}}\]
Where, \[{a_n} = \] nth term of the sequence
a\[ = \]first term of the sequence
r\[ = \]common ratio.
Sum of n terms of a G.P is denoted by \[{S_n}\]i.e.
\[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{(r - 1)}}\]
Where, a \[ = \]first term of the sequence.
r\[\, = \]common ratio.
n \[ = \] no. of terms in the sequence.
Complete step-by-step answer:
Let \[{S_n}\] denote the sum to n terms of the given sequence
Then,
\[{S_n} = {\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} + {\left( {{x^3} + \dfrac{1}{{{x^2}}}} \right)^2} + ....\]
First, we need to find the general term of the sequence i.e. \[{\left( {{x^n} + \dfrac{1}{{{x^n}}}} \right)^2}\]
Now, \[{S_n} = {\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} + {\left( {{x^3} + \dfrac{1}{{{x^2}}}} \right)^2} + ....{\left( {{x^n} + \dfrac{1}{{{x^n}}}} \right)^2}\]_____ (1).
Using identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] throughout the sequence (1), we have:
\[{S_n} = \left[ {{x^2} + \dfrac{1}{{{x^2}}} + 2x \times x} \right] + \left[ {{x^4} + \dfrac{1}{{{x^4}}} + 2{x^2} \times \dfrac{1}{{{x^2}}}} \right] + \left[ {{x^6} + \dfrac{1}{{{x^6}}} + 2{x^6} \times \dfrac{1}{{{x^6}}}} \right] + ......\left[ {{x^{2n}} + \dfrac{1}{{{x^{2n}}}} + 2{x^n} \times \dfrac{1}{{{x^n}}}} \right]\]
Simplify the series ${x^2}$ is canceled out.
\[{S_n} = \left[ {{x^2} + \dfrac{1}{{{x^2}}} + 2} \right] + \left[ {{x^4} + \dfrac{1}{{{x^4}}} + 2} \right] + \left[ {{x^6} + \dfrac{1}{{{x^6}}} + 2} \right] + ......\left[ {{x^{2n}} + \dfrac{1}{{{x^{2n}}}} + 2} \right]\]
Combining term, we get:
\[{S_n} = \left[ {{x^2} + {x^4} + {x^6} + ..... + {x^{2n}}} \right] + \left[ {\dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}} + \dfrac{1}{{x{}^6}} + ......\dfrac{1}{{{x^{2n}}}}} \right] + \left[ {2 + 2 + .........2n} \right]\]. ______ (2).
We see that \[\left[ {{x^2} + {x^4} + {x^6} + ..... + {x^{2n}}} \right]\] is a G.P with common ratio \[{x^2}\]and a\[ = {x^2}\]
Sum of finite. G.P \[ = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\]\[ = \dfrac{{{x^2}\left( {{{\left( {{x^2}} \right)}^n} - 1} \right)}}{{{x^2} - 1}}\]
\[\dfrac{{{x^2}\left[ {{x^{2n}} - 1} \right]}}{{{x^2} - 1}}\] _______(3)
Now,
\[\dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}} + ........ + \dfrac{1}{{{x^{2n}}}}\] is a G.P with a \[ = \dfrac{1}{{{x^2}}}\] and r \[ = \dfrac{1}{{{x^2}}}\]
Sum of finite G.P \[ = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}} = \dfrac{{\dfrac{1}{{{x^2}}}\left( {{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1} \right)}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}\] ____________(4).
Substituting equation (3) & (4) in (2), we have:
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}} \right] + \left( {2 + .... + 2} \right)\]n times
n times \[2\] will be \[2n\]
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}} \right] + 2n\]
Simplify
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{\dfrac{{1 - {x^{2n}}}}{{{x^{2n}}}}}}{{\dfrac{{1 - {x^2}}}{{{x^2}}}}}} \right] + 2n\]
Common denominator is cancelled out.
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^{2n}}}}\left[ {\dfrac{{1 - {x^{2n}}}}{{1 - {x^2}}}} \right] + 2n\]
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^{2n}}}}\left[ {\dfrac{{ - \left( {{x^{2n}} - 1} \right)}}{{ - \left( {{x^2} - 1} \right)}}} \right] + 2n\]
Taking \[\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right]\] common from first \[2\]terms
\[{S_n} = \left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \left[ {{x^2} + \dfrac{1}{{{x^{2n}}}}} \right] + 2n\]
Hence, it is the required sum.
Note: In such a question all we need is to recognize the sequence whether it is a G.P or an A.P.
Also, as it clearly stated we need to find the sum of n terms i.e. we need to find the nth terms first. Arithmetic progression is of the form:- a-d, a, a+d, a+2d,.....
where a is the first term and
d is the common difference.
Sum of n terms of such sequence means adding all the ‘n’ terms.
It could be done with various algebraic expressions
Here, \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
Further the concept of A.P & G.P series are used to solve such algebraic expressions
An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant. If the initial term of A.P is a, and common difference is ‘d’, then nth terms of sequence is
\[{a^n} = a + (n - 1)d,\] where n \[ = \] no. of terms.
Sum of A.P is given by \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right],\] where n \[ = \] no. of terms, a \[ = \] first term, d\[ = \]common difference.
Geometric sequence has a common ratio.
The formula for the nth term is:
\[{a_n} = a{r^{n - 1}}\]
Where, \[{a_n} = \] nth term of the sequence
a\[ = \]first term of the sequence
r\[ = \]common ratio.
Sum of n terms of a G.P is denoted by \[{S_n}\]i.e.
\[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{(r - 1)}}\]
Where, a \[ = \]first term of the sequence.
r\[\, = \]common ratio.
n \[ = \] no. of terms in the sequence.
Complete step-by-step answer:
Let \[{S_n}\] denote the sum to n terms of the given sequence
Then,
\[{S_n} = {\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} + {\left( {{x^3} + \dfrac{1}{{{x^2}}}} \right)^2} + ....\]
First, we need to find the general term of the sequence i.e. \[{\left( {{x^n} + \dfrac{1}{{{x^n}}}} \right)^2}\]
Now, \[{S_n} = {\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} + {\left( {{x^3} + \dfrac{1}{{{x^2}}}} \right)^2} + ....{\left( {{x^n} + \dfrac{1}{{{x^n}}}} \right)^2}\]_____ (1).
Using identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] throughout the sequence (1), we have:
\[{S_n} = \left[ {{x^2} + \dfrac{1}{{{x^2}}} + 2x \times x} \right] + \left[ {{x^4} + \dfrac{1}{{{x^4}}} + 2{x^2} \times \dfrac{1}{{{x^2}}}} \right] + \left[ {{x^6} + \dfrac{1}{{{x^6}}} + 2{x^6} \times \dfrac{1}{{{x^6}}}} \right] + ......\left[ {{x^{2n}} + \dfrac{1}{{{x^{2n}}}} + 2{x^n} \times \dfrac{1}{{{x^n}}}} \right]\]
Simplify the series ${x^2}$ is canceled out.
\[{S_n} = \left[ {{x^2} + \dfrac{1}{{{x^2}}} + 2} \right] + \left[ {{x^4} + \dfrac{1}{{{x^4}}} + 2} \right] + \left[ {{x^6} + \dfrac{1}{{{x^6}}} + 2} \right] + ......\left[ {{x^{2n}} + \dfrac{1}{{{x^{2n}}}} + 2} \right]\]
Combining term, we get:
\[{S_n} = \left[ {{x^2} + {x^4} + {x^6} + ..... + {x^{2n}}} \right] + \left[ {\dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}} + \dfrac{1}{{x{}^6}} + ......\dfrac{1}{{{x^{2n}}}}} \right] + \left[ {2 + 2 + .........2n} \right]\]. ______ (2).
We see that \[\left[ {{x^2} + {x^4} + {x^6} + ..... + {x^{2n}}} \right]\] is a G.P with common ratio \[{x^2}\]and a\[ = {x^2}\]
Sum of finite. G.P \[ = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\]\[ = \dfrac{{{x^2}\left( {{{\left( {{x^2}} \right)}^n} - 1} \right)}}{{{x^2} - 1}}\]
\[\dfrac{{{x^2}\left[ {{x^{2n}} - 1} \right]}}{{{x^2} - 1}}\] _______(3)
Now,
\[\dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}} + ........ + \dfrac{1}{{{x^{2n}}}}\] is a G.P with a \[ = \dfrac{1}{{{x^2}}}\] and r \[ = \dfrac{1}{{{x^2}}}\]
Sum of finite G.P \[ = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}} = \dfrac{{\dfrac{1}{{{x^2}}}\left( {{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1} \right)}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}\] ____________(4).
Substituting equation (3) & (4) in (2), we have:
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}} \right] + \left( {2 + .... + 2} \right)\]n times
n times \[2\] will be \[2n\]
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}} \right] + 2n\]
Simplify
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{\dfrac{{1 - {x^{2n}}}}{{{x^{2n}}}}}}{{\dfrac{{1 - {x^2}}}{{{x^2}}}}}} \right] + 2n\]
Common denominator is cancelled out.
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^{2n}}}}\left[ {\dfrac{{1 - {x^{2n}}}}{{1 - {x^2}}}} \right] + 2n\]
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^{2n}}}}\left[ {\dfrac{{ - \left( {{x^{2n}} - 1} \right)}}{{ - \left( {{x^2} - 1} \right)}}} \right] + 2n\]
Taking \[\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right]\] common from first \[2\]terms
\[{S_n} = \left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \left[ {{x^2} + \dfrac{1}{{{x^{2n}}}}} \right] + 2n\]
Hence, it is the required sum.
Note: In such a question all we need is to recognize the sequence whether it is a G.P or an A.P.
Also, as it clearly stated we need to find the sum of n terms i.e. we need to find the nth terms first. Arithmetic progression is of the form:- a-d, a, a+d, a+2d,.....
where a is the first term and
d is the common difference.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE