
Find the sum of the series whose ${{n}^{th}}$ term is ${{n}^{2}}\left( {{n}^{2}}-1 \right)$.
Answer
611.7k+ views
Hint: Use the summation of special series \[\sum{{{n}^{2}}}\] and $\sum{{{n}^{4}}}$ to get the sum of $n$ terms of the given series.
Complete Step-by-step answer:
Note: As we generally do not use the special series ${{1}^{4}}+{{2}^{4}}+{{3}^{4}}+.......{{n}^{4}}$ in the problems of sequence and series chapter.
One can prove the summation of $\sum{{{n}^{4}}}$ as follows: -
We have
${{\left( n+1 \right)}^{5}}-{{n}^{5}}=5{{n}^{4}}-10{{n}^{3}}+10{{n}^{2}}-5n+1$
Now, put $n=1,2,3,....n$ and add all the equations to get summation as
${{2}^{5}}-{{1}^{5}}=5\cdot {{1}^{4}}-10\cdot {{1}^{3}}+10\cdot {{1}^{2}}-5\cdot 1+1$
${{3}^{5}}-{{2}^{5}}=5\cdot {{2}^{4}}-10\cdot {{2}^{3}}+10\cdot {{2}^{2}}-5\cdot 2+1$
${{4}^{5}}-{{3}^{5}}=5\cdot {{3}^{4}}-10\cdot {{3}^{3}}+10\cdot {{2}^{3}}-5\cdot 3+1$
Till ‘n’ terms
Now, add all these equations and use $\sum{{{n}^{2}}}$ and $\sum{{{n}^{3}}}$ to get $\sum{{{n}^{4}}}$.
Using a direct sum of special series always makes the solution flexible and easier.
Complete Step-by-step answer:
Let us suppose the given ${{n}^{th}}$term i.e., ${{n}^{2}}\left( {{n}^{2}}-1 \right)$ be ${{T}_{n}}$. Hence,
${{T}_{n}}={{n}^{2}}\left( {{n}^{2}}-1 \right)$…………………………………………..(i)
Now, for getting sum of this series we can apply summation to given such as
$\sum\limits_{n=1}^{n}{{{T}_{n}}}=\sum\limits_{n=1}^{n}{{{n}^{2}}\left( {{n}^{2}}-1 \right)}$………………………………………….(ii)
Series can be given as
${{1}^{2}}\left( {{1}^{2}}-1 \right)+{{2}^{2}}\left( {{2}^{2}}-1 \right)+{{3}^{2}}\left( {{3}^{2}}-1 \right)+{{4}^{2}}\left( {{4}^{2}}-1 \right)+..............{{n}^{2}}\left( {{n}^{2}}-1 \right)$
Let us represent this series with ${{S}_{n}}$. Hence, we get
${{S}_{n}}={{1}^{2}}\left( {{1}^{2}}-1 \right)+{{2}^{2}}\left( {{2}^{2}}-1 \right)+{{3}^{2}}\left( {{3}^{2}}-1 \right)+{{4}^{2}}\left( {{4}^{2}}-1 \right)+..............{{n}^{2}}\left( {{n}^{2}}-1 \right)$
$\Rightarrow {{S}_{n}}=\left( {{1}^{4}}-{{1}^{2}} \right)+\left( {{2}^{4}}-{{2}^{2}} \right)+\left( {{3}^{4}}-{{3}^{2}} \right)+\left( {{4}^{4}}-{{4}^{2}} \right)+.............\left( {{n}^{4}}-{{n}^{2}} \right)$
Now, we can simplify the above series by taking ${{1}^{4}},{{2}^{4}},{{3}^{4}}.........{{n}^{4}}$ in one bracket and ${{1}^{2}},{{2}^{2}},{{3}^{2}}.........{{n}^{2}}$in another; Hence, we get
${{S}_{n}}=\left( {{1}^{4}}+{{2}^{4}}+{{3}^{4}}+.........{{n}^{4}} \right)-\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+.........{{n}^{2}} \right)$……………………………….(iii)
Now, we know the identities of summation of special series as
$\sum\limits_{n=1}^{n}{{{n}^{2}}}={{1}^{2}}+{{2}^{2}}+{{3}^{2}}+.........{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
$\sum\limits_{n=1}^{n}{n}=1+2+3+........n=\dfrac{n\left( n+1 \right)}{2}$
$\sum\limits_{n=1}^{n}{{{n}^{3}}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+........{{n}^{3}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4}$
$\sum\limits_{n=1}^{n}{{{n}^{4}}}={{1}^{4}}+{{2}^{4}}+{{3}^{4}}+........{{n}^{4}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( 3{{n}^{2}}+3n-1 \right)}{30}$
So, we can put values of $\sum{{{n}^{4}}}$and $\sum{{{n}^{2}}}$from above equations to equations (iii); Hence, we get
${{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( 3{{n}^{2}}+3n-1 \right)}{30}-\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
Here, we can take $\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$ as common for further simplify the given equation in ${{S}_{n}}$. Hence, we get
${{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\left[ \dfrac{3{{n}^{2}}+3n-1}{5}-\dfrac{1}{1} \right]$${{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\left[ \dfrac{3{{n}^{2}}+3n-1}{5}-\dfrac{1}{1} \right]$
Taking L.C.M. in bracket, we get
${{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\left[ \dfrac{3{{n}^{2}}+3n-1-5}{5} \right]$
$\Rightarrow {{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( 3{{n}^{2}}+3n-6 \right)}{30}$
Now, taking ‘3’ as common from $3{{n}^{2}}+3n-6$, we get
${{S}_{n}}=\dfrac{3n\left( n+1 \right)\left( 2n+1 \right)\left( {{n}^{2}}+n-2 \right)}{30}$
$\Rightarrow {{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( {{n}^{2}}+n-2 \right)}{10}$………………………………………….(iv)
Now, we can factorize ${{n}^{2}}+n-2$ by splitting middle term ‘$n$’ as ‘$2n-n$’ to simplify ‘${{S}_{n}}$’ further:-
$ {{n}^{2}}+n-2={{n}^{2}}+2n-n-2 $
$ \Rightarrow {{n}^{2}}+n-2=n\left( n+2 \right)-1\left( n+2 \right) $
$ \Rightarrow {{n}^{2}}+n-2=\left( n-1 \right)\left( n+2 \right) $
Hence, equation (iv) can be further simplified as
${{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( n-1 \right)\left( n+2 \right)}{10}$
Now, we can replace $\left( n-1 \right)\left( n+1 \right)$ by ${{n}^{2}}-1$ using algebraic identity $\left( a-b \right)\left( a+b \right)=\left( {{a}^{2}}-{{b}^{2}} \right)$ . Hence, we get
${{S}_{n}}=\dfrac{n\left( n+2 \right)\left( 2n+1 \right)\left( {{n}^{2}}-1 \right)}{10}$
Note: As we generally do not use the special series ${{1}^{4}}+{{2}^{4}}+{{3}^{4}}+.......{{n}^{4}}$ in the problems of sequence and series chapter.
One can prove the summation of $\sum{{{n}^{4}}}$ as follows: -
We have
${{\left( n+1 \right)}^{5}}-{{n}^{5}}=5{{n}^{4}}-10{{n}^{3}}+10{{n}^{2}}-5n+1$
Now, put $n=1,2,3,....n$ and add all the equations to get summation as
${{2}^{5}}-{{1}^{5}}=5\cdot {{1}^{4}}-10\cdot {{1}^{3}}+10\cdot {{1}^{2}}-5\cdot 1+1$
${{3}^{5}}-{{2}^{5}}=5\cdot {{2}^{4}}-10\cdot {{2}^{3}}+10\cdot {{2}^{2}}-5\cdot 2+1$
${{4}^{5}}-{{3}^{5}}=5\cdot {{3}^{4}}-10\cdot {{3}^{3}}+10\cdot {{2}^{3}}-5\cdot 3+1$
Till ‘n’ terms
Now, add all these equations and use $\sum{{{n}^{2}}}$ and $\sum{{{n}^{3}}}$ to get $\sum{{{n}^{4}}}$.
Using a direct sum of special series always makes the solution flexible and easier.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

