
Find the sum of the series whose ${{n}^{th}}$ term is ${{n}^{2}}\left( {{n}^{2}}-1 \right)$.
Answer
597k+ views
Hint: Use the summation of special series \[\sum{{{n}^{2}}}\] and $\sum{{{n}^{4}}}$ to get the sum of $n$ terms of the given series.
Complete Step-by-step answer:
Note: As we generally do not use the special series ${{1}^{4}}+{{2}^{4}}+{{3}^{4}}+.......{{n}^{4}}$ in the problems of sequence and series chapter.
One can prove the summation of $\sum{{{n}^{4}}}$ as follows: -
We have
${{\left( n+1 \right)}^{5}}-{{n}^{5}}=5{{n}^{4}}-10{{n}^{3}}+10{{n}^{2}}-5n+1$
Now, put $n=1,2,3,....n$ and add all the equations to get summation as
${{2}^{5}}-{{1}^{5}}=5\cdot {{1}^{4}}-10\cdot {{1}^{3}}+10\cdot {{1}^{2}}-5\cdot 1+1$
${{3}^{5}}-{{2}^{5}}=5\cdot {{2}^{4}}-10\cdot {{2}^{3}}+10\cdot {{2}^{2}}-5\cdot 2+1$
${{4}^{5}}-{{3}^{5}}=5\cdot {{3}^{4}}-10\cdot {{3}^{3}}+10\cdot {{2}^{3}}-5\cdot 3+1$
Till ‘n’ terms
Now, add all these equations and use $\sum{{{n}^{2}}}$ and $\sum{{{n}^{3}}}$ to get $\sum{{{n}^{4}}}$.
Using a direct sum of special series always makes the solution flexible and easier.
Complete Step-by-step answer:
Let us suppose the given ${{n}^{th}}$term i.e., ${{n}^{2}}\left( {{n}^{2}}-1 \right)$ be ${{T}_{n}}$. Hence,
${{T}_{n}}={{n}^{2}}\left( {{n}^{2}}-1 \right)$…………………………………………..(i)
Now, for getting sum of this series we can apply summation to given such as
$\sum\limits_{n=1}^{n}{{{T}_{n}}}=\sum\limits_{n=1}^{n}{{{n}^{2}}\left( {{n}^{2}}-1 \right)}$………………………………………….(ii)
Series can be given as
${{1}^{2}}\left( {{1}^{2}}-1 \right)+{{2}^{2}}\left( {{2}^{2}}-1 \right)+{{3}^{2}}\left( {{3}^{2}}-1 \right)+{{4}^{2}}\left( {{4}^{2}}-1 \right)+..............{{n}^{2}}\left( {{n}^{2}}-1 \right)$
Let us represent this series with ${{S}_{n}}$. Hence, we get
${{S}_{n}}={{1}^{2}}\left( {{1}^{2}}-1 \right)+{{2}^{2}}\left( {{2}^{2}}-1 \right)+{{3}^{2}}\left( {{3}^{2}}-1 \right)+{{4}^{2}}\left( {{4}^{2}}-1 \right)+..............{{n}^{2}}\left( {{n}^{2}}-1 \right)$
$\Rightarrow {{S}_{n}}=\left( {{1}^{4}}-{{1}^{2}} \right)+\left( {{2}^{4}}-{{2}^{2}} \right)+\left( {{3}^{4}}-{{3}^{2}} \right)+\left( {{4}^{4}}-{{4}^{2}} \right)+.............\left( {{n}^{4}}-{{n}^{2}} \right)$
Now, we can simplify the above series by taking ${{1}^{4}},{{2}^{4}},{{3}^{4}}.........{{n}^{4}}$ in one bracket and ${{1}^{2}},{{2}^{2}},{{3}^{2}}.........{{n}^{2}}$in another; Hence, we get
${{S}_{n}}=\left( {{1}^{4}}+{{2}^{4}}+{{3}^{4}}+.........{{n}^{4}} \right)-\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+.........{{n}^{2}} \right)$……………………………….(iii)
Now, we know the identities of summation of special series as
$\sum\limits_{n=1}^{n}{{{n}^{2}}}={{1}^{2}}+{{2}^{2}}+{{3}^{2}}+.........{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
$\sum\limits_{n=1}^{n}{n}=1+2+3+........n=\dfrac{n\left( n+1 \right)}{2}$
$\sum\limits_{n=1}^{n}{{{n}^{3}}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+........{{n}^{3}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4}$
$\sum\limits_{n=1}^{n}{{{n}^{4}}}={{1}^{4}}+{{2}^{4}}+{{3}^{4}}+........{{n}^{4}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( 3{{n}^{2}}+3n-1 \right)}{30}$
So, we can put values of $\sum{{{n}^{4}}}$and $\sum{{{n}^{2}}}$from above equations to equations (iii); Hence, we get
${{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( 3{{n}^{2}}+3n-1 \right)}{30}-\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
Here, we can take $\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$ as common for further simplify the given equation in ${{S}_{n}}$. Hence, we get
${{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\left[ \dfrac{3{{n}^{2}}+3n-1}{5}-\dfrac{1}{1} \right]$${{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\left[ \dfrac{3{{n}^{2}}+3n-1}{5}-\dfrac{1}{1} \right]$
Taking L.C.M. in bracket, we get
${{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\left[ \dfrac{3{{n}^{2}}+3n-1-5}{5} \right]$
$\Rightarrow {{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( 3{{n}^{2}}+3n-6 \right)}{30}$
Now, taking ‘3’ as common from $3{{n}^{2}}+3n-6$, we get
${{S}_{n}}=\dfrac{3n\left( n+1 \right)\left( 2n+1 \right)\left( {{n}^{2}}+n-2 \right)}{30}$
$\Rightarrow {{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( {{n}^{2}}+n-2 \right)}{10}$………………………………………….(iv)
Now, we can factorize ${{n}^{2}}+n-2$ by splitting middle term ‘$n$’ as ‘$2n-n$’ to simplify ‘${{S}_{n}}$’ further:-
$ {{n}^{2}}+n-2={{n}^{2}}+2n-n-2 $
$ \Rightarrow {{n}^{2}}+n-2=n\left( n+2 \right)-1\left( n+2 \right) $
$ \Rightarrow {{n}^{2}}+n-2=\left( n-1 \right)\left( n+2 \right) $
Hence, equation (iv) can be further simplified as
${{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( n-1 \right)\left( n+2 \right)}{10}$
Now, we can replace $\left( n-1 \right)\left( n+1 \right)$ by ${{n}^{2}}-1$ using algebraic identity $\left( a-b \right)\left( a+b \right)=\left( {{a}^{2}}-{{b}^{2}} \right)$ . Hence, we get
${{S}_{n}}=\dfrac{n\left( n+2 \right)\left( 2n+1 \right)\left( {{n}^{2}}-1 \right)}{10}$
Note: As we generally do not use the special series ${{1}^{4}}+{{2}^{4}}+{{3}^{4}}+.......{{n}^{4}}$ in the problems of sequence and series chapter.
One can prove the summation of $\sum{{{n}^{4}}}$ as follows: -
We have
${{\left( n+1 \right)}^{5}}-{{n}^{5}}=5{{n}^{4}}-10{{n}^{3}}+10{{n}^{2}}-5n+1$
Now, put $n=1,2,3,....n$ and add all the equations to get summation as
${{2}^{5}}-{{1}^{5}}=5\cdot {{1}^{4}}-10\cdot {{1}^{3}}+10\cdot {{1}^{2}}-5\cdot 1+1$
${{3}^{5}}-{{2}^{5}}=5\cdot {{2}^{4}}-10\cdot {{2}^{3}}+10\cdot {{2}^{2}}-5\cdot 2+1$
${{4}^{5}}-{{3}^{5}}=5\cdot {{3}^{4}}-10\cdot {{3}^{3}}+10\cdot {{2}^{3}}-5\cdot 3+1$
Till ‘n’ terms
Now, add all these equations and use $\sum{{{n}^{2}}}$ and $\sum{{{n}^{3}}}$ to get $\sum{{{n}^{4}}}$.
Using a direct sum of special series always makes the solution flexible and easier.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

