
Find the sum of the series 3.75,3.5,3.25……….upto 16 terms.
Answer
608.4k+ views
Hint- First find out the type of progression which the sequence is in that is if it is in A.P, G.P or H.P and solve it.
The series given to us is 3.75,3.5,3.25…………..
We have been asked to find out the sum of the series upto 16 terms
From the series given we get ${T_2} - {T_1} = 3.5 - 3.75 = - 0.25$
Also, we get ${T_3} - {T_2} = 3.25 - 3.50 = - 0.25$
So, from this we got ${T_3} - {T_2} = {T_2} - {T_1}$ =common difference=d
So, from this we can conclude that the given series is in Arithmetic Progression(A.P)
So, we know that the sum of n terms of an A.P is given by
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
So, on comparing with the sequence ,we can write
The first term=a=3.75
Common difference d=-0.25
Here, since we have to find out the sum upto 16 terms, we consider n=16
Let us substitute these values in the ${S_n}$ formula
So, we get $
{S_{16}} = \dfrac{{16}}{2}\left( {2 \times 3.75 + (16 - 1)( - 0.25)} \right) \\
{S_{16}} = 8(7.5 - 3.75) \\
{S_{16}} = 8(3.75) \\
\Rightarrow{S_{16}} = 30 \\
$
So, the sum of the series upto 16 terms=30
Note: When finding sum to n terms of an AP we can make use of an alternative formula if the first and last terms of an AP are known or we can use the same formula as used in this problem and solve.
The series given to us is 3.75,3.5,3.25…………..
We have been asked to find out the sum of the series upto 16 terms
From the series given we get ${T_2} - {T_1} = 3.5 - 3.75 = - 0.25$
Also, we get ${T_3} - {T_2} = 3.25 - 3.50 = - 0.25$
So, from this we got ${T_3} - {T_2} = {T_2} - {T_1}$ =common difference=d
So, from this we can conclude that the given series is in Arithmetic Progression(A.P)
So, we know that the sum of n terms of an A.P is given by
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
So, on comparing with the sequence ,we can write
The first term=a=3.75
Common difference d=-0.25
Here, since we have to find out the sum upto 16 terms, we consider n=16
Let us substitute these values in the ${S_n}$ formula
So, we get $
{S_{16}} = \dfrac{{16}}{2}\left( {2 \times 3.75 + (16 - 1)( - 0.25)} \right) \\
{S_{16}} = 8(7.5 - 3.75) \\
{S_{16}} = 8(3.75) \\
\Rightarrow{S_{16}} = 30 \\
$
So, the sum of the series upto 16 terms=30
Note: When finding sum to n terms of an AP we can make use of an alternative formula if the first and last terms of an AP are known or we can use the same formula as used in this problem and solve.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

