
Find the sum of the series 3.75,3.5,3.25……….upto 16 terms.
Answer
551.7k+ views
Hint- First find out the type of progression which the sequence is in that is if it is in A.P, G.P or H.P and solve it.
The series given to us is 3.75,3.5,3.25…………..
We have been asked to find out the sum of the series upto 16 terms
From the series given we get ${T_2} - {T_1} = 3.5 - 3.75 = - 0.25$
Also, we get ${T_3} - {T_2} = 3.25 - 3.50 = - 0.25$
So, from this we got ${T_3} - {T_2} = {T_2} - {T_1}$ =common difference=d
So, from this we can conclude that the given series is in Arithmetic Progression(A.P)
So, we know that the sum of n terms of an A.P is given by
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
So, on comparing with the sequence ,we can write
The first term=a=3.75
Common difference d=-0.25
Here, since we have to find out the sum upto 16 terms, we consider n=16
Let us substitute these values in the ${S_n}$ formula
So, we get $
{S_{16}} = \dfrac{{16}}{2}\left( {2 \times 3.75 + (16 - 1)( - 0.25)} \right) \\
{S_{16}} = 8(7.5 - 3.75) \\
{S_{16}} = 8(3.75) \\
\Rightarrow{S_{16}} = 30 \\
$
So, the sum of the series upto 16 terms=30
Note: When finding sum to n terms of an AP we can make use of an alternative formula if the first and last terms of an AP are known or we can use the same formula as used in this problem and solve.
The series given to us is 3.75,3.5,3.25…………..
We have been asked to find out the sum of the series upto 16 terms
From the series given we get ${T_2} - {T_1} = 3.5 - 3.75 = - 0.25$
Also, we get ${T_3} - {T_2} = 3.25 - 3.50 = - 0.25$
So, from this we got ${T_3} - {T_2} = {T_2} - {T_1}$ =common difference=d
So, from this we can conclude that the given series is in Arithmetic Progression(A.P)
So, we know that the sum of n terms of an A.P is given by
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
So, on comparing with the sequence ,we can write
The first term=a=3.75
Common difference d=-0.25
Here, since we have to find out the sum upto 16 terms, we consider n=16
Let us substitute these values in the ${S_n}$ formula
So, we get $
{S_{16}} = \dfrac{{16}}{2}\left( {2 \times 3.75 + (16 - 1)( - 0.25)} \right) \\
{S_{16}} = 8(7.5 - 3.75) \\
{S_{16}} = 8(3.75) \\
\Rightarrow{S_{16}} = 30 \\
$
So, the sum of the series upto 16 terms=30
Note: When finding sum to n terms of an AP we can make use of an alternative formula if the first and last terms of an AP are known or we can use the same formula as used in this problem and solve.
Recently Updated Pages
Power set of empty set has exactly subset class 11 maths CBSE

While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
