
Find the sum of the series $1+\left( 2\times 3 \right)+\left( 3\times 5 \right)+\left( 4\times 7 \right)........$ up to 11 terms?
(a) 915
(b) 946
(c) 945
(d) 916
Answer
576k+ views
Hint: We start solving the problem by finding the general equation to represent each term of the series. After finding the general equation, we take summation of it up to n terms. Once we find the summation up to n terms, we substitute 11 in place in n and make required calculations to get the desired result.
Complete step-by-step answer:
According to the problem, we need to find the sum of the series $1+\left( 2\times 3 \right)+\left( 3\times 5 \right)+\left( 4\times 7 \right)........$ up to 11 terms.
Let us find the general term of the series to solve for the sum of the series.
$\Rightarrow \left( 1\times 1 \right)+\left( 2\times 3 \right)+\left( 3\times 5 \right)+\left( 4\times 7 \right)........$ .
$\Rightarrow \left( 1\times \left( 2-1 \right) \right)+\left( 2\times \left( 4-1 \right) \right)+\left( 3\times \left( 6-1 \right) \right)+\left( 4\times \left( 8-1 \right) \right)........$ .
$\Rightarrow \left( 1\times \left( 2\left( 1 \right)-1 \right) \right)+\left( 2\times \left( 2\left( 2 \right)-1 \right) \right)+\left( 3\times \left( 2\left( 3 \right)-1 \right) \right)+\left( 4\times \left( 2\left( 4 \right)-1 \right) \right)........$ ---(1).
We can see that each term is of the form $r\times \left( 2r-1 \right)$ for $r=1,2,3,......n$.
So, we get general term as $r\times \left( 2r-1 \right)=\left( 2{{r}^{2}}-r \right)$.
We can represent sum of the series in equation (1) as $\sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=\sum\limits_{r=1}^{n}{2{{r}^{2}}}-\sum\limits_{r=1}^{n}{r}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=2\sum\limits_{r=1}^{n}{{{r}^{2}}}-\sum\limits_{r=1}^{n}{r}$.
We know that sum of the squares of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the first n natural numbers is $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$.
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=2\left( \dfrac{n\times \left( n+1 \right)\times \left( 2n+1 \right)}{6} \right)-\left( \dfrac{n\left( n+1 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=\left( \dfrac{n\times \left( n+1 \right)\times \left( 2n+1 \right)}{3} \right)-\left( \dfrac{n\left( n+1 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=n\times \left( n+1 \right)\times \left( \dfrac{\left( 2n+1 \right)}{3}-\dfrac{1}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=n\times \left( n+1 \right)\times \left( \dfrac{2\times \left( 2n+1 \right)-3}{6} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=n\times \left( n+1 \right)\times \left( \dfrac{4n+2-3}{6} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=\dfrac{n\times \left( n+1 \right)\times \left( 4n-1 \right)}{6}\] ---(2).
Now we substitute 11 in place of n in equation (2).
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( 2{{r}^{2}}-r \right)}=\dfrac{11\times \left( 11+1 \right)\times \left( 4\left( 11 \right)-1 \right)}{6}\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( 2{{r}^{2}}-r \right)}=\dfrac{11\times \left( 12 \right)\times \left( 44-1 \right)}{6}\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( 2{{r}^{2}}-r \right)}=11\times 2\times 43\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( 2{{r}^{2}}-r \right)}=946\].
We have found the sum of the series $1+\left( 2\times 3 \right)+\left( 3\times 5 \right)+\left( 4\times 7 \right)........$ up to 11 terms as 946.
∴ The sum of the series $1+\left( 2\times 3 \right)+\left( 3\times 5 \right)+\left( 4\times 7 \right)........$ up to 11 terms as 946.
The correct option for the given problem is (b).
Note: Whenever we get this type of problem, we try to find the general equation of the terms which makes our sum easier. We can also take 10 in place of n while finding the general summation for n terms. We should not make any mistakes while calculating the general equation, sum and others. Similarly, we expect problems involving sum of cubes of first n natural numbers.
Complete step-by-step answer:
According to the problem, we need to find the sum of the series $1+\left( 2\times 3 \right)+\left( 3\times 5 \right)+\left( 4\times 7 \right)........$ up to 11 terms.
Let us find the general term of the series to solve for the sum of the series.
$\Rightarrow \left( 1\times 1 \right)+\left( 2\times 3 \right)+\left( 3\times 5 \right)+\left( 4\times 7 \right)........$ .
$\Rightarrow \left( 1\times \left( 2-1 \right) \right)+\left( 2\times \left( 4-1 \right) \right)+\left( 3\times \left( 6-1 \right) \right)+\left( 4\times \left( 8-1 \right) \right)........$ .
$\Rightarrow \left( 1\times \left( 2\left( 1 \right)-1 \right) \right)+\left( 2\times \left( 2\left( 2 \right)-1 \right) \right)+\left( 3\times \left( 2\left( 3 \right)-1 \right) \right)+\left( 4\times \left( 2\left( 4 \right)-1 \right) \right)........$ ---(1).
We can see that each term is of the form $r\times \left( 2r-1 \right)$ for $r=1,2,3,......n$.
So, we get general term as $r\times \left( 2r-1 \right)=\left( 2{{r}^{2}}-r \right)$.
We can represent sum of the series in equation (1) as $\sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=\sum\limits_{r=1}^{n}{2{{r}^{2}}}-\sum\limits_{r=1}^{n}{r}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=2\sum\limits_{r=1}^{n}{{{r}^{2}}}-\sum\limits_{r=1}^{n}{r}$.
We know that sum of the squares of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the first n natural numbers is $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$.
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=2\left( \dfrac{n\times \left( n+1 \right)\times \left( 2n+1 \right)}{6} \right)-\left( \dfrac{n\left( n+1 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=\left( \dfrac{n\times \left( n+1 \right)\times \left( 2n+1 \right)}{3} \right)-\left( \dfrac{n\left( n+1 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=n\times \left( n+1 \right)\times \left( \dfrac{\left( 2n+1 \right)}{3}-\dfrac{1}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=n\times \left( n+1 \right)\times \left( \dfrac{2\times \left( 2n+1 \right)-3}{6} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=n\times \left( n+1 \right)\times \left( \dfrac{4n+2-3}{6} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\left( 2{{r}^{2}}-r \right)}=\dfrac{n\times \left( n+1 \right)\times \left( 4n-1 \right)}{6}\] ---(2).
Now we substitute 11 in place of n in equation (2).
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( 2{{r}^{2}}-r \right)}=\dfrac{11\times \left( 11+1 \right)\times \left( 4\left( 11 \right)-1 \right)}{6}\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( 2{{r}^{2}}-r \right)}=\dfrac{11\times \left( 12 \right)\times \left( 44-1 \right)}{6}\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( 2{{r}^{2}}-r \right)}=11\times 2\times 43\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( 2{{r}^{2}}-r \right)}=946\].
We have found the sum of the series $1+\left( 2\times 3 \right)+\left( 3\times 5 \right)+\left( 4\times 7 \right)........$ up to 11 terms as 946.
∴ The sum of the series $1+\left( 2\times 3 \right)+\left( 3\times 5 \right)+\left( 4\times 7 \right)........$ up to 11 terms as 946.
The correct option for the given problem is (b).
Note: Whenever we get this type of problem, we try to find the general equation of the terms which makes our sum easier. We can also take 10 in place of n while finding the general summation for n terms. We should not make any mistakes while calculating the general equation, sum and others. Similarly, we expect problems involving sum of cubes of first n natural numbers.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

