
Find the sum of the following series up to n terms.
5 + 55 + 555 + ….
.6 + .66 + .666 + ….
Answer
595.2k+ views
Hint: First of all, multiply and divide 9 in both the series after taking common 5 and 0.6 from them respectively. Then make a G.P of the form \[10,{{10}^{2}},{{10}^{3}}....\] by writing 9 = 10 – 1, 99 = 100 – 1, and so on. Finally, use the formula for the sum of n terms of G.P that is \[\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\].
Complete step-by-step solution:
In this question, we have to find the sum of the n terms of the series.
(i) 5 + 55 + 555 + ….
(ii) .6 + .66 + .666 + ….
Let us consider the first series
S = 5 + 55 + 555 + ….. n terms
By taking out 5 common from the above series, we get,
S = 5 (1 + 11 + 111 + 1111 …. n terms)
By multiplying 9 on both the sides of the above equation, we get,
9S = 5 [9 + 99 + 999 …… n times]
\[\dfrac{9S}{5}=9+99+999.....\text{ n times}\]
We can also write the above equation as,
\[\dfrac{9S}{5}=\left( 10-1 \right)+\left( 100-1 \right)+\left( 1000-1 \right)....\text{ n times}\]
By simplifying the above equation and taking the term 1 separately, we get,
\[\dfrac{9S}{5}=\left( {{10}^{1}}+{{10}^{2}}+{{10}^{3}}.....\text{ n times} \right)-\left( 1+1+1......\text{ n times} \right)\]
We know that 1 added n times is equal to n and the nth term of 1, 2, 3…. n. So, we get,
\[\dfrac{9S}{5}=\left( {{10}^{1}}+{{10}^{2}}+{{10}^{3}}{{....10}^{n}} \right)-\left( n \right)\]
We know that the series of the form \[a,ar,a{{r}^{2}},a{{r}^{3}}.....a{{r}^{n}}\] is in G.P and sum of the n terms of this G.P is given by \[\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\]
In the above equation, we can see that \[10,{{10}^{2}},{{10}^{3}}....\] are in G.P with the first term and common ratio as 10. So, we get,
\[\dfrac{9S}{5}=\dfrac{10\left( 1-{{\left( 10 \right)}^{n}} \right)}{1-10}-n\]
\[\dfrac{9S}{5}=\dfrac{10\left( 1-{{\left( 10 \right)}^{n}} \right)}{-9}-n\]
\[\dfrac{9S}{5}=\dfrac{10}{9}\left( {{10}^{n}}-1 \right)-n\]
\[\dfrac{9S}{5}=\dfrac{10\left( {{10}^{n}}-1 \right)-9n}{9}\]
By multiplying \[\dfrac{5}{9}\] on both the sides of the above equation, we get,
\[S=\dfrac{5}{9}\left[ \dfrac{10\left( {{10}^{n}}-1 \right)-9n}{9} \right]\]
\[S=\dfrac{50\left( {{10}^{n}}-1 \right)}{81}-\dfrac{5}{9}n\]
Hence, the sum of the sequence 5 + 55 + 555….. up to n terms is equal to \[\dfrac{50\left( {{10}^{n}}-1 \right)}{81}-\dfrac{5n}{9}\]
Let us consider the second set.
S = 0.6 + 0.66 + 0.666 + ….. n times.
By taking out 0.6 common, we can write the sequence as,
S = 6 [0.1 + 0.11 + 0.111 ….. n terms]
By multiplying and dividing RHS by 9, we get,
\[S=\dfrac{6}{9}\left[ 0.9+0.99+0.999.....n\text{ terms} \right]\]
\[S=\dfrac{2}{3}\left[ \dfrac{9}{10}+\dfrac{99}{100}+\dfrac{999}{1000}+\dfrac{9999}{10000}.....n\text{ terms} \right]\]
We can write the above equation as,
\[S=\dfrac{2}{3}\left[ \dfrac{\left( 10-1 \right)}{10}+\dfrac{\left( 100-1 \right)}{100}+\dfrac{\left( 1000-1 \right)}{1000}+\dfrac{\left( 10000-1 \right)}{10000}.....n\text{ terms} \right]\]
\[S=\dfrac{2}{3}\left[ \left( 1-\dfrac{1}{10} \right)+\left( 1-\dfrac{1}{100} \right)+\left( 1-\dfrac{1}{1000} \right)+\left( 1-\dfrac{1}{10000} \right).....n\text{ terms} \right]\]
\[S=\dfrac{2}{3}\left[ \left( 1+1+1......n\text{ terms} \right)-\left( \dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{1000}.+...n\text{ terms} \right) \right]\]
Here, we can see that \[\dfrac{1}{10}+\dfrac{1}{{{\left( 10 \right)}^{2}}}+\dfrac{1}{{{\left( 10 \right)}^{3}}}+.....n\text{ terms}\] is in GP with \[a=\dfrac{1}{10}\] and \[r=\dfrac{1}{10}\].
We know that the sum of n terms of the G.P is \[\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\]. So, we get,
\[S=\dfrac{2}{3}\left[ \left( n \right)-\dfrac{\dfrac{1}{10}\left( 1-{{\left( \dfrac{1}{10} \right)}^{n}} \right)}{1-\dfrac{1}{10}} \right]\]
\[S=\dfrac{2}{3}\left[ n-\dfrac{\dfrac{1}{10}\left( 1-\dfrac{1}{{{10}^{n}}} \right)}{\dfrac{9}{10}} \right]\]
\[S=\dfrac{2}{3}\left[ n-\dfrac{1}{9}\left( 1-\dfrac{1}{{{10}^{n}}} \right) \right]\]
We know that \[\dfrac{1}{{{a}^{n}}}={{a}^{-n}}\]. By using this, we get,
\[S=\dfrac{2}{3}\left( n-\dfrac{1}{9}\left( 1-{{10}^{-n}} \right) \right)\]
So, \[S=\dfrac{2}{3}n-\dfrac{2}{27}\left[ 1-{{\left( 10 \right)}^{-n}} \right]\]
Hence, we get the sum of the sequence 0.6 + 0.66 + 0.666 + ….. n terms as \[\dfrac{2}{3}n-\dfrac{2}{27}\left[ 1-{{\left( 10 \right)}^{-n}} \right]\].
Note: In this question, students must note that whenever we are in need to find the sum of series of the type a + aa + aaa + aaaa ….., we always have to make the series of 9 + 99 + 999 + ….. type by multiplying and dividing the whole series by 9 so that we can get a G.P of the type \[10,{{10}^{2}},{{10}^{3}}\]…. Also in this question, some students make this mistake of considering 5 + 55 + 555 + …. Or 0.6 + 0.66 + 0.666 + …. In G.P which is wrong because we can see that there is no common ratio in these sequences.
Complete step-by-step solution:
In this question, we have to find the sum of the n terms of the series.
(i) 5 + 55 + 555 + ….
(ii) .6 + .66 + .666 + ….
Let us consider the first series
S = 5 + 55 + 555 + ….. n terms
By taking out 5 common from the above series, we get,
S = 5 (1 + 11 + 111 + 1111 …. n terms)
By multiplying 9 on both the sides of the above equation, we get,
9S = 5 [9 + 99 + 999 …… n times]
\[\dfrac{9S}{5}=9+99+999.....\text{ n times}\]
We can also write the above equation as,
\[\dfrac{9S}{5}=\left( 10-1 \right)+\left( 100-1 \right)+\left( 1000-1 \right)....\text{ n times}\]
By simplifying the above equation and taking the term 1 separately, we get,
\[\dfrac{9S}{5}=\left( {{10}^{1}}+{{10}^{2}}+{{10}^{3}}.....\text{ n times} \right)-\left( 1+1+1......\text{ n times} \right)\]
We know that 1 added n times is equal to n and the nth term of 1, 2, 3…. n. So, we get,
\[\dfrac{9S}{5}=\left( {{10}^{1}}+{{10}^{2}}+{{10}^{3}}{{....10}^{n}} \right)-\left( n \right)\]
We know that the series of the form \[a,ar,a{{r}^{2}},a{{r}^{3}}.....a{{r}^{n}}\] is in G.P and sum of the n terms of this G.P is given by \[\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\]
In the above equation, we can see that \[10,{{10}^{2}},{{10}^{3}}....\] are in G.P with the first term and common ratio as 10. So, we get,
\[\dfrac{9S}{5}=\dfrac{10\left( 1-{{\left( 10 \right)}^{n}} \right)}{1-10}-n\]
\[\dfrac{9S}{5}=\dfrac{10\left( 1-{{\left( 10 \right)}^{n}} \right)}{-9}-n\]
\[\dfrac{9S}{5}=\dfrac{10}{9}\left( {{10}^{n}}-1 \right)-n\]
\[\dfrac{9S}{5}=\dfrac{10\left( {{10}^{n}}-1 \right)-9n}{9}\]
By multiplying \[\dfrac{5}{9}\] on both the sides of the above equation, we get,
\[S=\dfrac{5}{9}\left[ \dfrac{10\left( {{10}^{n}}-1 \right)-9n}{9} \right]\]
\[S=\dfrac{50\left( {{10}^{n}}-1 \right)}{81}-\dfrac{5}{9}n\]
Hence, the sum of the sequence 5 + 55 + 555….. up to n terms is equal to \[\dfrac{50\left( {{10}^{n}}-1 \right)}{81}-\dfrac{5n}{9}\]
Let us consider the second set.
S = 0.6 + 0.66 + 0.666 + ….. n times.
By taking out 0.6 common, we can write the sequence as,
S = 6 [0.1 + 0.11 + 0.111 ….. n terms]
By multiplying and dividing RHS by 9, we get,
\[S=\dfrac{6}{9}\left[ 0.9+0.99+0.999.....n\text{ terms} \right]\]
\[S=\dfrac{2}{3}\left[ \dfrac{9}{10}+\dfrac{99}{100}+\dfrac{999}{1000}+\dfrac{9999}{10000}.....n\text{ terms} \right]\]
We can write the above equation as,
\[S=\dfrac{2}{3}\left[ \dfrac{\left( 10-1 \right)}{10}+\dfrac{\left( 100-1 \right)}{100}+\dfrac{\left( 1000-1 \right)}{1000}+\dfrac{\left( 10000-1 \right)}{10000}.....n\text{ terms} \right]\]
\[S=\dfrac{2}{3}\left[ \left( 1-\dfrac{1}{10} \right)+\left( 1-\dfrac{1}{100} \right)+\left( 1-\dfrac{1}{1000} \right)+\left( 1-\dfrac{1}{10000} \right).....n\text{ terms} \right]\]
\[S=\dfrac{2}{3}\left[ \left( 1+1+1......n\text{ terms} \right)-\left( \dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{1000}.+...n\text{ terms} \right) \right]\]
Here, we can see that \[\dfrac{1}{10}+\dfrac{1}{{{\left( 10 \right)}^{2}}}+\dfrac{1}{{{\left( 10 \right)}^{3}}}+.....n\text{ terms}\] is in GP with \[a=\dfrac{1}{10}\] and \[r=\dfrac{1}{10}\].
We know that the sum of n terms of the G.P is \[\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\]. So, we get,
\[S=\dfrac{2}{3}\left[ \left( n \right)-\dfrac{\dfrac{1}{10}\left( 1-{{\left( \dfrac{1}{10} \right)}^{n}} \right)}{1-\dfrac{1}{10}} \right]\]
\[S=\dfrac{2}{3}\left[ n-\dfrac{\dfrac{1}{10}\left( 1-\dfrac{1}{{{10}^{n}}} \right)}{\dfrac{9}{10}} \right]\]
\[S=\dfrac{2}{3}\left[ n-\dfrac{1}{9}\left( 1-\dfrac{1}{{{10}^{n}}} \right) \right]\]
We know that \[\dfrac{1}{{{a}^{n}}}={{a}^{-n}}\]. By using this, we get,
\[S=\dfrac{2}{3}\left( n-\dfrac{1}{9}\left( 1-{{10}^{-n}} \right) \right)\]
So, \[S=\dfrac{2}{3}n-\dfrac{2}{27}\left[ 1-{{\left( 10 \right)}^{-n}} \right]\]
Hence, we get the sum of the sequence 0.6 + 0.66 + 0.666 + ….. n terms as \[\dfrac{2}{3}n-\dfrac{2}{27}\left[ 1-{{\left( 10 \right)}^{-n}} \right]\].
Note: In this question, students must note that whenever we are in need to find the sum of series of the type a + aa + aaa + aaaa ….., we always have to make the series of 9 + 99 + 999 + ….. type by multiplying and dividing the whole series by 9 so that we can get a G.P of the type \[10,{{10}^{2}},{{10}^{3}}\]…. Also in this question, some students make this mistake of considering 5 + 55 + 555 + …. Or 0.6 + 0.66 + 0.666 + …. In G.P which is wrong because we can see that there is no common ratio in these sequences.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

