   Question Answers

# Find the sum of the first $n$ terms and up to infinite terms of the following series:$\dfrac{4}{1\cdot 2\cdot 3}+\dfrac{5}{2\cdot 3\cdot 4}+\dfrac{6}{3\cdot 4\cdot 5}+..................$  Hint: For solving this question first we will analyse the given series and write the expression of ${{r}^{th}}$ the term of the given series and then write it in the form of ${{T}_{r}}=f\left( r \right)-f\left( r+1 \right)$. After that we will apply the summation and find the sum of first $n$ terms and then we will find the sum of the infinite terms of the given series.

Given:
We have to find the sum of the first $n$ terms and up to infinite terms of the following series:
$\dfrac{4}{1\cdot 2\cdot 3}+\dfrac{5}{2\cdot 3\cdot 4}+\dfrac{6}{3\cdot 4\cdot 5}+..................$
Now, if we look at the given series and if ${{T}_{r}}$ is the ${{r}^{th}}$ term of the given series and try to analyse the first three terms then we can write ${{T}_{r}}=\dfrac{r+3}{r\left( r+1 \right)\left( r+2 \right)}$ .
Now, we have to find the value of $\sum\limits_{r=1}^{n}{{{T}_{r}}}$ . But before this, we should modify the expression of the ${{r}^{th}}$ term with simple arithmetic operations. Then,
\begin{align} & {{T}_{r}}=\dfrac{r+3}{r\left( r+1 \right)\left( r+2 \right)}=\dfrac{r}{r\left( r+1 \right)\left( r+2 \right)}+\dfrac{3}{r\left( r+1 \right)\left( r+2 \right)} \\ & \Rightarrow {{T}_{r}}=\dfrac{1}{\left( r+1 \right)\left( r+2 \right)}+\dfrac{3}{2}\left[ \dfrac{2}{r\left( r+1 \right)\left( r+2 \right)} \right]=\dfrac{\left( r+2 \right)-\left( r+1 \right)}{\left( r+1 \right)\left( r+2 \right)}+\dfrac{3}{2}\left[ \dfrac{\left( r+2 \right)-r}{r\left( r+1 \right)\left( r+2 \right)} \right] \\ & \Rightarrow {{T}_{r}}=\dfrac{1}{\left( r+1 \right)}-\dfrac{1}{\left( r+2 \right)}+\dfrac{3}{2}\left[ \dfrac{1}{r\left( r+1 \right)}-\dfrac{1}{\left( r+1 \right)\left( r+2 \right)} \right] \\ & \Rightarrow {{T}_{r}}=\dfrac{1}{\left( r+1 \right)}+\dfrac{3}{2r\left( r+1 \right)}-\left[ \dfrac{1}{\left( r+2 \right)}+\dfrac{3}{2\left( r+1 \right)\left( r+2 \right)} \right] \\ & \Rightarrow {{T}_{r}}=\dfrac{2r+3}{2r\left( r+1 \right)}-\dfrac{2r+5}{2\left( r+1 \right)\left( r+2 \right)} \\ \end{align}
Now, let $f\left( r \right)=\dfrac{2r+3}{2r\left( r+1 \right)}$ . Then,
\begin{align} & f\left( r \right)=\dfrac{2r+3}{2r\left( r+1 \right)} \\ & \Rightarrow f\left( r+1 \right)=\dfrac{2\left( r+1 \right)+3}{2\left( r+1 \right)\left( r+1+1 \right)} \\ & \Rightarrow f\left( r+1 \right)=\dfrac{2r+5}{2\left( r+1 \right)\left( r+2 \right)} \\ \end{align}
Now, as we have calculated that ${{T}_{r}}=\dfrac{2r+3}{2r\left( r+1 \right)}-\dfrac{2r+5}{2\left( r+1 \right)\left( r+2 \right)}$ . Then,
\begin{align} & {{T}_{r}}=\dfrac{2r+3}{2r\left( r+1 \right)}-\dfrac{2r+5}{2\left( r+1 \right)\left( r+2 \right)} \\ & \Rightarrow {{T}_{r}}=f\left( r \right)-f\left( r+1 \right) \\ \end{align}
Now, we will calculate the value of $\sum\limits_{r=1}^{n}{{{T}_{r}}}$ . Then,
\begin{align} & \sum\limits_{r=1}^{n}{{{T}_{r}}}=\sum\limits_{r=1}^{r=n}{f\left( r \right)-f\left( r+1 \right)} \\ & \Rightarrow \sum\limits_{r=1}^{n}{{{T}_{r}}}=\left[ f\left( 1 \right)-f\left( 2 \right) \right]+\left[ f\left( 2 \right)-f\left( 3 \right) \right]+\left[ f\left( 3 \right)-f\left( 4 \right) \right]+.........+\left[ f\left( n-1 \right)-f\left( n \right) \right]+\left[ f\left( n \right)-f\left( n+1 \right) \right] \\ & \Rightarrow \sum\limits_{r=1}^{n}{{{T}_{r}}}=f\left( 1 \right)-f\left( n+1 \right) \\ \end{align}
Now, as per our assumption $f\left( r \right)=\dfrac{2r+3}{2r\left( r+1 \right)}$ . Then,
\begin{align} & \sum\limits_{r=1}^{n}{{{T}_{r}}}=f\left( 1 \right)-f\left( n+1 \right) \\ & \Rightarrow \sum\limits_{r=1}^{n}{{{T}_{r}}}=\dfrac{2+3}{2\times 1\times 2}-\dfrac{2n+2+3}{2\left( n+1 \right)\left( n+2 \right)} \\ & \Rightarrow \sum\limits_{r=1}^{n}{{{T}_{r}}}=\dfrac{5}{4}-\dfrac{2n+5}{2\left( {{n}^{2}}+3n+2 \right)} \\ \end{align}
Now from the above result, we conclude that the sum of the first $n$ terms of the given series will be $\sum\limits_{r=1}^{n}{{{T}_{r}}}=\dfrac{5}{4}-\dfrac{2n+5}{2\left( {{n}^{2}}+3n+2 \right)}$ .
Now, the sum of infinite terms will be $\sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{5}{4}-\dfrac{2n+5}{2\left( {{n}^{2}}+3n+2 \right)} \right]$ . Then,
\begin{align} & \sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{5}{4}-\dfrac{2n+5}{2\left( {{n}^{2}}+3n+2 \right)} \right] \\ & \Rightarrow \sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{5}{4}-\dfrac{2+{}^{5}/{}_{n}}{2\left( n+3+{}^{2}/{}_{{{n}^{2}}} \right)} \right] \\ & \Rightarrow \sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\left[ \dfrac{5}{4}-0 \right] \\ & \Rightarrow \sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\dfrac{5}{4} \\ \end{align}
Now, from the above result, we can say that sum of infinite terms of the given series will be $\sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\dfrac{5}{4}$ .
Thus, final answers will be $\sum\limits_{r=1}^{n}{{{T}_{r}}}=\dfrac{5}{4}-\dfrac{2n+5}{2\left( {{n}^{2}}+3n+2 \right)}$ and $\sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\dfrac{5}{4}$ where ${{T}_{r}}$ is the ${{r}^{th}}$ term of the given series.

Note: Here, the student should first try to understand what is asked in the question. After that, we should first try to analyse the given series and somehow write the expression of ${{r}^{th}}$ term. We should write it correctly without any mistake and then write in the form of ${{T}_{r}}=f\left( r \right)-f\left( r+1 \right)$ so, that we will be able to calculate the value of summation easily without any mistake.
View Notes
To Find the Weight of a Given Body Using Parallelogram Law of Vectors  How to Find Square Root of a Number  The Idea of Time  To Measure the Volume of an Irregular Lamina Using Screw Gauge  How to Find Cube Root?  The Perimeter of Rectangle Formula  Dark Side of the Moon  To Determine the Mass of Two Different Objects Using a Beam Balance  The Ghat of the Only World Summary  What are the Functions of the Human Skeletal System?  Important Questions for CBSE Class 11 English Snapshots Chapter 1 - The Summer of the Beautiful White Horse  Important Questions for CBSE Class 11 Biology Chapter 8 - Cell The Unit of Life  CBSE Class 8 Science Reaching The Age of Adolescence Worksheets  Important Questions for CBSE Class 6 Social Science The Earth Our Habitat Chapter 3 - Motions of the Earth  Important Questions for CBSE Class 6 English A Pact with The Sun Chapter 9 - What Happened to The Reptiles  Important Questions for CBSE Class 6 English A Pact with The Sun Chapter 6 - The Monkey and the Crocodile  Important Questions for CBSE Class 11 English Woven Chapter 6 - The Story  CBSE Class 8 Science Stars and The Solar System Worksheets  Important Questions for CBSE Class 11 Indian Economic Development Chapter 1 - Indian Economy on the Eve of Independence  Important Questions for CBSE Class 6 Social Science The Earth Our Habitat Chapter 5 - Major Domains Of The Earth  Maths Question Paper for CBSE Class 12 - 2016 Set 1 N  Chemistry Question Paper for CBSE Class 12 - 2016 Set 1 N  Previous Year Question Paper for CBSE Class 12 Physics - 2016 Set 1 N  Previous Year Question Paper of CBSE Class 10 English  CBSE Class 12 Maths Question Paper 2020  CBSE Class 10 Maths Question Paper 2020  Maths Question Paper for CBSE Class 10 - 2011  Maths Question Paper for CBSE Class 10 - 2008  CBSE Class 10 Maths Question Paper 2017  Maths Question Paper for CBSE Class 10 - 2012  NCERT Solutions for Class 10 English First Flight Chapter 11 - The Proposal  NCERT Solutions Class 11 English Woven Words Prose Chapter 4 The Adventure of the Three Garridebs  NCERT Solutions for Class 12 English Vistas Chapter 3 - Journey to the end of the Earth  NCERT Solutions for Class 10 English First Flight Chapter 4 - From the Diary of Anne Frank  NCERT Solutions for Class 11 English Snapshots Chapter 6 - The Ghat of the Only World  NCERT Solutions for Class 10 English First Flight Chapter 8 - Mijbil the Otter  NCERT Solutions Class 11 English Woven Words Poem Chapter 2 Let Me Not to the Marriage of True Minds  NCERT Solutions for Class 11 English Hornbill Chapter 4 - Landscape of the Soul  NCERT Solutions for Class 10 English First Flight Chapter 10 - The Sermon at Benares  Textbooks Solutions for CBSE & ICSE Board of Class 6 to 12 Maths & Science  