
How do you find the sum of $\sum{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}$ where i is [1, 4]?
Answer
445.8k+ views
Hint: We will consider $\sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}$ and apply algebraic formulas ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ and ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$ to solve it further. We are going to apply the formulas separately to ${{\left( i-1 \right)}^{2}}$ and \[{{\left( i+1 \right)}^{3}}\]. After getting the resultant terms we will simply substitute them in $\sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}$. Finally we will put I as 1, 2, 3, 4 and solve it in the required correct way to get the right sum.
Complete step by step solution:
The right way to understand the question is to write it as $\sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}$ …(i).
We did this because it is given in the question that i is [1, 4]. Here, we will apply two algebraic equations and these are ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ and ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$. We will apply ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ to ${{\left( i-1 \right)}^{2}}$ thus, we get
$\begin{align}
& {{\left( i-1 \right)}^{2}}={{\left( i \right)}^{2}}+{{\left( 1 \right)}^{2}}-2\left( i \right)\left( 1 \right) \\
& \Rightarrow {{\left( i-1 \right)}^{2}}={{i}^{2}}+1-2i\,\,\,\,...(ii) \\
\end{align}$
Similarly, we will apply ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$ to \[{{\left( i+1 \right)}^{3}}\] and get the following.
\[\begin{align}
& {{\left( i+1 \right)}^{3}}={{\left( i \right)}^{3}}+{{\left( 1 \right)}^{3}}+3{{\left( 1 \right)}^{2}}\left( i \right)+3\left( 1 \right){{\left( i \right)}^{2}} \\
& \Rightarrow {{\left( i+1 \right)}^{3}}={{i}^{3}}+1+3i+3{{i}^{2}}\,\,\,...(iii) \\
\end{align}\]
Now, we will substitute (ii) and (iii) in (i) to get the following.
\[\begin{align}
& \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ \left( {{i}^{2}}+1-2i \right)+\left( {{i}^{3}}+1+3i+3{{i}^{2}} \right) \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ {{i}^{2}}+1-2i+{{i}^{3}}+1+3i+3{{i}^{2}} \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ {{i}^{3}}+4{{i}^{2}}+i+2 \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ {{\left( 1 \right)}^{3}}+4{{\left( 1 \right)}^{2}}+\left( 1 \right)+2 \right]+\left[ {{\left( 2 \right)}^{3}}+4{{\left( 2 \right)}^{2}}+\left( 2 \right)+2 \right] \\
& +\left[ {{\left( 3 \right)}^{3}}+4{{\left( 3 \right)}^{2}}+\left( 3 \right)+2 \right]+\left[ {{\left( 4 \right)}^{3}}+4{{\left( 4 \right)}^{2}}+\left( 4 \right)+2 \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ 1+4+1+2 \right]+\left[ 8+16+2+2 \right]+\left[ 27+36+3+2 \right]+\left[ 64+64+4+2 \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=8+28+68+134 \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=238 \\
\end{align}\]
Hence, the required sum is 238.
Note: We could have solved it by starting to open the sum first. This is done below.
\[\begin{align}
& \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ {{\left( 1-1 \right)}^{2}}+{{\left( 1+1 \right)}^{3}} \right]+\left[ {{\left( 2-1 \right)}^{2}}+{{\left( 2+1 \right)}^{3}} \right]+\left[ {{\left( 3-1 \right)}^{2}}+{{\left( 3+1 \right)}^{3}} \right]+\left[ {{\left( 4-1 \right)}^{2}}+{{\left( 4+1 \right)}^{3}} \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ 0+{{\left( 2 \right)}^{3}} \right]+\left[ {{\left( 1 \right)}^{2}}+{{\left( 3 \right)}^{3}} \right]+\left[ {{\left( 2 \right)}^{2}}+{{\left( 4 \right)}^{3}} \right]+\left[ {{\left( 3 \right)}^{2}}+{{\left( 5 \right)}^{3}} \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=8+1+27+4+64+9+125 \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=238 \\
\end{align}\]
We can clearly see that we did not even apply algebraic formulas for a solution. This is a simple method to get the right answer in no time. The above is a little lengthy and this is why it needs focus while solving it. In case we lose our concentration then we might lead towards the wrong answer. Do not misunderstand I as iota otherwise, we will not get the required answer which is what we need here. Take care of minus and plus signs while using algebraic formulas.
Complete step by step solution:
The right way to understand the question is to write it as $\sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}$ …(i).
We did this because it is given in the question that i is [1, 4]. Here, we will apply two algebraic equations and these are ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ and ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$. We will apply ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ to ${{\left( i-1 \right)}^{2}}$ thus, we get
$\begin{align}
& {{\left( i-1 \right)}^{2}}={{\left( i \right)}^{2}}+{{\left( 1 \right)}^{2}}-2\left( i \right)\left( 1 \right) \\
& \Rightarrow {{\left( i-1 \right)}^{2}}={{i}^{2}}+1-2i\,\,\,\,...(ii) \\
\end{align}$
Similarly, we will apply ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$ to \[{{\left( i+1 \right)}^{3}}\] and get the following.
\[\begin{align}
& {{\left( i+1 \right)}^{3}}={{\left( i \right)}^{3}}+{{\left( 1 \right)}^{3}}+3{{\left( 1 \right)}^{2}}\left( i \right)+3\left( 1 \right){{\left( i \right)}^{2}} \\
& \Rightarrow {{\left( i+1 \right)}^{3}}={{i}^{3}}+1+3i+3{{i}^{2}}\,\,\,...(iii) \\
\end{align}\]
Now, we will substitute (ii) and (iii) in (i) to get the following.
\[\begin{align}
& \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ \left( {{i}^{2}}+1-2i \right)+\left( {{i}^{3}}+1+3i+3{{i}^{2}} \right) \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ {{i}^{2}}+1-2i+{{i}^{3}}+1+3i+3{{i}^{2}} \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ {{i}^{3}}+4{{i}^{2}}+i+2 \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ {{\left( 1 \right)}^{3}}+4{{\left( 1 \right)}^{2}}+\left( 1 \right)+2 \right]+\left[ {{\left( 2 \right)}^{3}}+4{{\left( 2 \right)}^{2}}+\left( 2 \right)+2 \right] \\
& +\left[ {{\left( 3 \right)}^{3}}+4{{\left( 3 \right)}^{2}}+\left( 3 \right)+2 \right]+\left[ {{\left( 4 \right)}^{3}}+4{{\left( 4 \right)}^{2}}+\left( 4 \right)+2 \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ 1+4+1+2 \right]+\left[ 8+16+2+2 \right]+\left[ 27+36+3+2 \right]+\left[ 64+64+4+2 \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=8+28+68+134 \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=238 \\
\end{align}\]
Hence, the required sum is 238.
Note: We could have solved it by starting to open the sum first. This is done below.
\[\begin{align}
& \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ {{\left( 1-1 \right)}^{2}}+{{\left( 1+1 \right)}^{3}} \right]+\left[ {{\left( 2-1 \right)}^{2}}+{{\left( 2+1 \right)}^{3}} \right]+\left[ {{\left( 3-1 \right)}^{2}}+{{\left( 3+1 \right)}^{3}} \right]+\left[ {{\left( 4-1 \right)}^{2}}+{{\left( 4+1 \right)}^{3}} \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ 0+{{\left( 2 \right)}^{3}} \right]+\left[ {{\left( 1 \right)}^{2}}+{{\left( 3 \right)}^{3}} \right]+\left[ {{\left( 2 \right)}^{2}}+{{\left( 4 \right)}^{3}} \right]+\left[ {{\left( 3 \right)}^{2}}+{{\left( 5 \right)}^{3}} \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=8+1+27+4+64+9+125 \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=238 \\
\end{align}\]
We can clearly see that we did not even apply algebraic formulas for a solution. This is a simple method to get the right answer in no time. The above is a little lengthy and this is why it needs focus while solving it. In case we lose our concentration then we might lead towards the wrong answer. Do not misunderstand I as iota otherwise, we will not get the required answer which is what we need here. Take care of minus and plus signs while using algebraic formulas.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
