
How do you find the sum of $\sum{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}$ where i is [1, 4]?
Answer
541.8k+ views
Hint: We will consider $\sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}$ and apply algebraic formulas ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ and ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$ to solve it further. We are going to apply the formulas separately to ${{\left( i-1 \right)}^{2}}$ and \[{{\left( i+1 \right)}^{3}}\]. After getting the resultant terms we will simply substitute them in $\sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}$. Finally we will put I as 1, 2, 3, 4 and solve it in the required correct way to get the right sum.
Complete step by step solution:
The right way to understand the question is to write it as $\sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}$ …(i).
We did this because it is given in the question that i is [1, 4]. Here, we will apply two algebraic equations and these are ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ and ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$. We will apply ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ to ${{\left( i-1 \right)}^{2}}$ thus, we get
$\begin{align}
& {{\left( i-1 \right)}^{2}}={{\left( i \right)}^{2}}+{{\left( 1 \right)}^{2}}-2\left( i \right)\left( 1 \right) \\
& \Rightarrow {{\left( i-1 \right)}^{2}}={{i}^{2}}+1-2i\,\,\,\,...(ii) \\
\end{align}$
Similarly, we will apply ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$ to \[{{\left( i+1 \right)}^{3}}\] and get the following.
\[\begin{align}
& {{\left( i+1 \right)}^{3}}={{\left( i \right)}^{3}}+{{\left( 1 \right)}^{3}}+3{{\left( 1 \right)}^{2}}\left( i \right)+3\left( 1 \right){{\left( i \right)}^{2}} \\
& \Rightarrow {{\left( i+1 \right)}^{3}}={{i}^{3}}+1+3i+3{{i}^{2}}\,\,\,...(iii) \\
\end{align}\]
Now, we will substitute (ii) and (iii) in (i) to get the following.
\[\begin{align}
& \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ \left( {{i}^{2}}+1-2i \right)+\left( {{i}^{3}}+1+3i+3{{i}^{2}} \right) \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ {{i}^{2}}+1-2i+{{i}^{3}}+1+3i+3{{i}^{2}} \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ {{i}^{3}}+4{{i}^{2}}+i+2 \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ {{\left( 1 \right)}^{3}}+4{{\left( 1 \right)}^{2}}+\left( 1 \right)+2 \right]+\left[ {{\left( 2 \right)}^{3}}+4{{\left( 2 \right)}^{2}}+\left( 2 \right)+2 \right] \\
& +\left[ {{\left( 3 \right)}^{3}}+4{{\left( 3 \right)}^{2}}+\left( 3 \right)+2 \right]+\left[ {{\left( 4 \right)}^{3}}+4{{\left( 4 \right)}^{2}}+\left( 4 \right)+2 \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ 1+4+1+2 \right]+\left[ 8+16+2+2 \right]+\left[ 27+36+3+2 \right]+\left[ 64+64+4+2 \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=8+28+68+134 \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=238 \\
\end{align}\]
Hence, the required sum is 238.
Note: We could have solved it by starting to open the sum first. This is done below.
\[\begin{align}
& \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ {{\left( 1-1 \right)}^{2}}+{{\left( 1+1 \right)}^{3}} \right]+\left[ {{\left( 2-1 \right)}^{2}}+{{\left( 2+1 \right)}^{3}} \right]+\left[ {{\left( 3-1 \right)}^{2}}+{{\left( 3+1 \right)}^{3}} \right]+\left[ {{\left( 4-1 \right)}^{2}}+{{\left( 4+1 \right)}^{3}} \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ 0+{{\left( 2 \right)}^{3}} \right]+\left[ {{\left( 1 \right)}^{2}}+{{\left( 3 \right)}^{3}} \right]+\left[ {{\left( 2 \right)}^{2}}+{{\left( 4 \right)}^{3}} \right]+\left[ {{\left( 3 \right)}^{2}}+{{\left( 5 \right)}^{3}} \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=8+1+27+4+64+9+125 \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=238 \\
\end{align}\]
We can clearly see that we did not even apply algebraic formulas for a solution. This is a simple method to get the right answer in no time. The above is a little lengthy and this is why it needs focus while solving it. In case we lose our concentration then we might lead towards the wrong answer. Do not misunderstand I as iota otherwise, we will not get the required answer which is what we need here. Take care of minus and plus signs while using algebraic formulas.
Complete step by step solution:
The right way to understand the question is to write it as $\sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}$ …(i).
We did this because it is given in the question that i is [1, 4]. Here, we will apply two algebraic equations and these are ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ and ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$. We will apply ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ to ${{\left( i-1 \right)}^{2}}$ thus, we get
$\begin{align}
& {{\left( i-1 \right)}^{2}}={{\left( i \right)}^{2}}+{{\left( 1 \right)}^{2}}-2\left( i \right)\left( 1 \right) \\
& \Rightarrow {{\left( i-1 \right)}^{2}}={{i}^{2}}+1-2i\,\,\,\,...(ii) \\
\end{align}$
Similarly, we will apply ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$ to \[{{\left( i+1 \right)}^{3}}\] and get the following.
\[\begin{align}
& {{\left( i+1 \right)}^{3}}={{\left( i \right)}^{3}}+{{\left( 1 \right)}^{3}}+3{{\left( 1 \right)}^{2}}\left( i \right)+3\left( 1 \right){{\left( i \right)}^{2}} \\
& \Rightarrow {{\left( i+1 \right)}^{3}}={{i}^{3}}+1+3i+3{{i}^{2}}\,\,\,...(iii) \\
\end{align}\]
Now, we will substitute (ii) and (iii) in (i) to get the following.
\[\begin{align}
& \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ \left( {{i}^{2}}+1-2i \right)+\left( {{i}^{3}}+1+3i+3{{i}^{2}} \right) \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ {{i}^{2}}+1-2i+{{i}^{3}}+1+3i+3{{i}^{2}} \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\sum\limits_{i=1}^{4}{\left[ {{i}^{3}}+4{{i}^{2}}+i+2 \right]} \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ {{\left( 1 \right)}^{3}}+4{{\left( 1 \right)}^{2}}+\left( 1 \right)+2 \right]+\left[ {{\left( 2 \right)}^{3}}+4{{\left( 2 \right)}^{2}}+\left( 2 \right)+2 \right] \\
& +\left[ {{\left( 3 \right)}^{3}}+4{{\left( 3 \right)}^{2}}+\left( 3 \right)+2 \right]+\left[ {{\left( 4 \right)}^{3}}+4{{\left( 4 \right)}^{2}}+\left( 4 \right)+2 \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ 1+4+1+2 \right]+\left[ 8+16+2+2 \right]+\left[ 27+36+3+2 \right]+\left[ 64+64+4+2 \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=8+28+68+134 \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=238 \\
\end{align}\]
Hence, the required sum is 238.
Note: We could have solved it by starting to open the sum first. This is done below.
\[\begin{align}
& \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ {{\left( 1-1 \right)}^{2}}+{{\left( 1+1 \right)}^{3}} \right]+\left[ {{\left( 2-1 \right)}^{2}}+{{\left( 2+1 \right)}^{3}} \right]+\left[ {{\left( 3-1 \right)}^{2}}+{{\left( 3+1 \right)}^{3}} \right]+\left[ {{\left( 4-1 \right)}^{2}}+{{\left( 4+1 \right)}^{3}} \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=\left[ 0+{{\left( 2 \right)}^{3}} \right]+\left[ {{\left( 1 \right)}^{2}}+{{\left( 3 \right)}^{3}} \right]+\left[ {{\left( 2 \right)}^{2}}+{{\left( 4 \right)}^{3}} \right]+\left[ {{\left( 3 \right)}^{2}}+{{\left( 5 \right)}^{3}} \right] \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=8+1+27+4+64+9+125 \\
& \Rightarrow \sum\limits_{i=1}^{4}{\left[ {{\left( i-1 \right)}^{2}}+{{\left( i+1 \right)}^{3}} \right]}=238 \\
\end{align}\]
We can clearly see that we did not even apply algebraic formulas for a solution. This is a simple method to get the right answer in no time. The above is a little lengthy and this is why it needs focus while solving it. In case we lose our concentration then we might lead towards the wrong answer. Do not misunderstand I as iota otherwise, we will not get the required answer which is what we need here. Take care of minus and plus signs while using algebraic formulas.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

