
Find the square root of the given equation ${{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}$?
(a) ${{x}^{2}}\left( a+b \right)$,
(b) ${{x}^{\left( \dfrac{a+b}{2} \right)}}$,
(c) ${{x}^{\dfrac{{{\left( a+b \right)}^{2}}}{2}}}$,
(d) ${{x}^{a+b}}$.
Answer
573.9k+ views
Hint: We start solving the problem by assigning variable for the square of ${{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}$. We then use law of exponents ${{a}^{m}}.{{a}^{n}}={{a}^{m+n}}$ to proceed through the problem. After using the law, we make necessary arrangements in the exponents and use ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ to proceed through the problem. We then apply square for the obtained result and use the law ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}$ to proceed through the problem. We then make necessary arrangements and calculations to get the required result.
Complete step by step answer:
According to the problem, we need to find the square root of ${{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}$. Let us consider the square root to be ‘y’.
So, we have $y=\sqrt{{{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}}$.
$\Rightarrow {{y}^{2}}={{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}$ ---(1).
From the law of exponents, we know that ${{a}^{m}}.{{a}^{n}}={{a}^{m+n}}$. We use this result in equation (1).
$\Rightarrow {{y}^{2}}={{x}^{{{b}^{2}}+{{b}^{2}}+2ab+{{a}^{2}}-{{b}^{2}}}}$.
$\Rightarrow {{y}^{2}}={{x}^{{{b}^{2}}+2ab+{{a}^{2}}}}$.
$\Rightarrow {{y}^{2}}={{x}^{{{\left( b \right)}^{2}}+2\left( a \right)\left( b \right)+{{\left( a \right)}^{2}}}}$ ---(2).
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$, we use this result in equation (2).
$\Rightarrow {{y}^{2}}={{x}^{{{\left( a+b \right)}^{2}}}}$.
$\Rightarrow y={{\left( {{x}^{{{\left( a+b \right)}^{2}}}} \right)}^{\dfrac{1}{2}}}$ ---(3).
From the law of exponents, we know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}$. We use this result in equation (3).
\[\Rightarrow y={{x}^{\left( {{\left( a+b \right)}^{2}} \right)}}^{\times \left( \dfrac{1}{2} \right)}\].
\[\Rightarrow y={{x}^{\dfrac{{{\left( a+b \right)}^{2}}}{2}}}\].
So, we have found the square root of ${{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}$ as \[{{x}^{\dfrac{{{\left( a+b \right)}^{2}}}{2}}}\].
∴ The square root of ${{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}$ is \[{{x}^{\dfrac{{{\left( a+b \right)}^{2}}}{2}}}\].
The correct option for the given problem is (c).
Note:
We should not make confuse $\sqrt{{{x}^{{{\left( a+b \right)}^{2}}}}}$ with ${{x}^{\left( a+b \right)}}$ as that is wrong and doesn’t follow the laws of exponents. We can check this by assuming numerical values for ‘x’, ‘a’ and ‘b’ and find the square root for the required form. We should not confuse while applying formulas and make mistakes while doing calculations and arrangements. Similarly, we can expect problems that contain cubic equations in exponents.
Complete step by step answer:
According to the problem, we need to find the square root of ${{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}$. Let us consider the square root to be ‘y’.
So, we have $y=\sqrt{{{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}}$.
$\Rightarrow {{y}^{2}}={{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}$ ---(1).
From the law of exponents, we know that ${{a}^{m}}.{{a}^{n}}={{a}^{m+n}}$. We use this result in equation (1).
$\Rightarrow {{y}^{2}}={{x}^{{{b}^{2}}+{{b}^{2}}+2ab+{{a}^{2}}-{{b}^{2}}}}$.
$\Rightarrow {{y}^{2}}={{x}^{{{b}^{2}}+2ab+{{a}^{2}}}}$.
$\Rightarrow {{y}^{2}}={{x}^{{{\left( b \right)}^{2}}+2\left( a \right)\left( b \right)+{{\left( a \right)}^{2}}}}$ ---(2).
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$, we use this result in equation (2).
$\Rightarrow {{y}^{2}}={{x}^{{{\left( a+b \right)}^{2}}}}$.
$\Rightarrow y={{\left( {{x}^{{{\left( a+b \right)}^{2}}}} \right)}^{\dfrac{1}{2}}}$ ---(3).
From the law of exponents, we know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}$. We use this result in equation (3).
\[\Rightarrow y={{x}^{\left( {{\left( a+b \right)}^{2}} \right)}}^{\times \left( \dfrac{1}{2} \right)}\].
\[\Rightarrow y={{x}^{\dfrac{{{\left( a+b \right)}^{2}}}{2}}}\].
So, we have found the square root of ${{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}$ as \[{{x}^{\dfrac{{{\left( a+b \right)}^{2}}}{2}}}\].
∴ The square root of ${{x}^{{{b}^{2}}}}{{x}^{{{b}^{2}}+2ab}}{{x}^{{{a}^{2}}-{{b}^{2}}}}$ is \[{{x}^{\dfrac{{{\left( a+b \right)}^{2}}}{2}}}\].
The correct option for the given problem is (c).
Note:
We should not make confuse $\sqrt{{{x}^{{{\left( a+b \right)}^{2}}}}}$ with ${{x}^{\left( a+b \right)}}$ as that is wrong and doesn’t follow the laws of exponents. We can check this by assuming numerical values for ‘x’, ‘a’ and ‘b’ and find the square root for the required form. We should not confuse while applying formulas and make mistakes while doing calculations and arrangements. Similarly, we can expect problems that contain cubic equations in exponents.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

