
How do you find the solution to $3{\tan ^2}\theta = 1$ if $0 \leqslant \theta < {360^ \circ }$?
Answer
450k+ views
Hint: First, divide both sides of the equation by $3$ and take square root on both sides of the equation, Then, find the values of $\theta $ satisfying $\tan \theta = \dfrac{1}{{\sqrt 3 }}$ using trigonometric properties.
Next, find the values of $\theta $ satisfying $\tan \theta = - \dfrac{1}{{\sqrt 3 }}$ using trigonometric properties. Next, find all values of $\theta $ in the interval $0 \leqslant \theta < {360^ \circ }$. Then, we will get all solutions of the given equation in the given interval.
Formula used:
$\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$
$\tan \left( {\pi - x} \right) = - \tan x$
$\tan \left( {2\pi - x} \right) = - \tan x$
Complete step by step answer:
Given equation: $3{\tan ^2}\theta = 1$
We have to find all possible values of $\theta $ satisfying given equation in the interval $0 \leqslant \theta < {360^ \circ }$.
Divide both sides of the equation by $3$, we get
${\tan ^2}\theta = \dfrac{1}{3}$
Take square root on both sides of the equation, we get
$\tan \theta = \pm \dfrac{1}{{\sqrt 3 }}$
First, we will find the values of $\theta $ satisfying $\tan \theta = \dfrac{1}{{\sqrt 3 }}$.
So, take the inverse tan of both sides of the equation to extract $\theta $ from inside the tan.
$\theta = \arctan \left( {\dfrac{1}{{\sqrt 3 }}} \right)$
Since, the exact value of $\arctan \left( {\dfrac{1}{{\sqrt 3 }}} \right) = \dfrac{\pi }{6}$.
$ \Rightarrow \theta = \dfrac{\pi }{6}$
Since, the tan function is positive in the first and third quadrants.
So, to find the second solution, add the reference angle from $\pi $ to find the solution in the fourth quadrant.
$\theta = \pi + \dfrac{\pi }{6}$
$ \Rightarrow \theta = \dfrac{{7\pi }}{6}$
Since, the period of the $\tan \theta $ function is $\pi $ so values will repeat every $\pi $ radians in both directions.
$\theta = \dfrac{\pi }{6} + n\pi ,\dfrac{{7\pi }}{6} + n\pi $, for any integer $n$.
Now, we will find the values of $\theta $ satisfying $\tan \theta = - \dfrac{1}{{\sqrt 3 }}$…(i)
So, using the property $\tan \left( {\pi - x} \right) = - \tan x$ and $\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$ in equation (i).
$ \Rightarrow \tan \theta = - \tan \dfrac{\pi }{6}$
$ \Rightarrow \tan \theta = \tan \left( {\pi - \dfrac{\pi }{6}} \right)$
$ \Rightarrow \theta = \dfrac{{5\pi }}{6}$
Now, using the property $\tan \left( {2\pi - x} \right) = - \tan x$ and $\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$ in equation (i).
$ \Rightarrow \tan \theta = - \tan \dfrac{\pi }{6}$
$ \Rightarrow \tan \theta = \tan \left( {2\pi - \dfrac{\pi }{6}} \right)$
$ \Rightarrow \theta = \dfrac{{11\pi }}{6}$
Since, the period of the $\tan \theta $ function is $\pi $ so values will repeat every $\pi $ radians in both directions.
$\theta = \dfrac{{5\pi }}{6} + n\pi ,\dfrac{{11\pi }}{6} + n\pi $, for any integer $n$.
Now, find all values of $\theta $ in the interval $0 \leqslant \theta < {360^ \circ }$.
Since, it is given that $\theta \in \left[ {0,{{360}^ \circ }} \right)$, hence put $n = 0$ in the general solution.
So, putting $n = 0$ in $\theta = \dfrac{\pi }{6} + n\pi ,\dfrac{{7\pi }}{6} + n\pi $, we get
$\theta = \dfrac{\pi }{6},\dfrac{{7\pi }}{6}$
Now, putting $n = 0$ in $\theta = \dfrac{{5\pi }}{6} + n\pi ,\dfrac{{11\pi }}{6} + n\pi $,we get
$\theta = \dfrac{{5\pi }}{6},\dfrac{{11\pi }}{6}$
Thus, $\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{11\pi }}{6}$ or $\theta = {30^ \circ },{150^ \circ },{210^ \circ },{330^ \circ }$.
Hence, $\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{11\pi }}{6}$ or $\theta = {30^ \circ },{150^ \circ },{210^ \circ },{330^ \circ }$ are solutions of the given equation in the interval $0 \leqslant \theta < {360^ \circ }$.
Note: In above question, we can find the solutions of given equation by plotting the equation, $3{\tan ^2}\theta = 1$ on graph paper and determine all solutions which lie in the interval, $0 \leqslant \theta < {360^ \circ }$.
From the graph paper, we can see that there are four values of $\theta $ in the interval $0 \leqslant \theta < {360^ \circ }$.
So, these will be the solutions of the given equation in the given interval.
Final solution: Hence, $\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{11\pi }}{6}$ or $\theta = {30^ \circ },{150^ \circ },{210^ \circ },{330^ \circ }$ are solutions of the given equation in the interval $0 \leqslant \theta < {360^ \circ }$.
Next, find the values of $\theta $ satisfying $\tan \theta = - \dfrac{1}{{\sqrt 3 }}$ using trigonometric properties. Next, find all values of $\theta $ in the interval $0 \leqslant \theta < {360^ \circ }$. Then, we will get all solutions of the given equation in the given interval.
Formula used:
$\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$
$\tan \left( {\pi - x} \right) = - \tan x$
$\tan \left( {2\pi - x} \right) = - \tan x$
Complete step by step answer:
Given equation: $3{\tan ^2}\theta = 1$
We have to find all possible values of $\theta $ satisfying given equation in the interval $0 \leqslant \theta < {360^ \circ }$.
Divide both sides of the equation by $3$, we get
${\tan ^2}\theta = \dfrac{1}{3}$
Take square root on both sides of the equation, we get
$\tan \theta = \pm \dfrac{1}{{\sqrt 3 }}$
First, we will find the values of $\theta $ satisfying $\tan \theta = \dfrac{1}{{\sqrt 3 }}$.
So, take the inverse tan of both sides of the equation to extract $\theta $ from inside the tan.
$\theta = \arctan \left( {\dfrac{1}{{\sqrt 3 }}} \right)$
Since, the exact value of $\arctan \left( {\dfrac{1}{{\sqrt 3 }}} \right) = \dfrac{\pi }{6}$.
$ \Rightarrow \theta = \dfrac{\pi }{6}$
Since, the tan function is positive in the first and third quadrants.
So, to find the second solution, add the reference angle from $\pi $ to find the solution in the fourth quadrant.
$\theta = \pi + \dfrac{\pi }{6}$
$ \Rightarrow \theta = \dfrac{{7\pi }}{6}$
Since, the period of the $\tan \theta $ function is $\pi $ so values will repeat every $\pi $ radians in both directions.
$\theta = \dfrac{\pi }{6} + n\pi ,\dfrac{{7\pi }}{6} + n\pi $, for any integer $n$.
Now, we will find the values of $\theta $ satisfying $\tan \theta = - \dfrac{1}{{\sqrt 3 }}$…(i)
So, using the property $\tan \left( {\pi - x} \right) = - \tan x$ and $\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$ in equation (i).
$ \Rightarrow \tan \theta = - \tan \dfrac{\pi }{6}$
$ \Rightarrow \tan \theta = \tan \left( {\pi - \dfrac{\pi }{6}} \right)$
$ \Rightarrow \theta = \dfrac{{5\pi }}{6}$
Now, using the property $\tan \left( {2\pi - x} \right) = - \tan x$ and $\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$ in equation (i).
$ \Rightarrow \tan \theta = - \tan \dfrac{\pi }{6}$
$ \Rightarrow \tan \theta = \tan \left( {2\pi - \dfrac{\pi }{6}} \right)$
$ \Rightarrow \theta = \dfrac{{11\pi }}{6}$
Since, the period of the $\tan \theta $ function is $\pi $ so values will repeat every $\pi $ radians in both directions.
$\theta = \dfrac{{5\pi }}{6} + n\pi ,\dfrac{{11\pi }}{6} + n\pi $, for any integer $n$.
Now, find all values of $\theta $ in the interval $0 \leqslant \theta < {360^ \circ }$.
Since, it is given that $\theta \in \left[ {0,{{360}^ \circ }} \right)$, hence put $n = 0$ in the general solution.
So, putting $n = 0$ in $\theta = \dfrac{\pi }{6} + n\pi ,\dfrac{{7\pi }}{6} + n\pi $, we get
$\theta = \dfrac{\pi }{6},\dfrac{{7\pi }}{6}$
Now, putting $n = 0$ in $\theta = \dfrac{{5\pi }}{6} + n\pi ,\dfrac{{11\pi }}{6} + n\pi $,we get
$\theta = \dfrac{{5\pi }}{6},\dfrac{{11\pi }}{6}$
Thus, $\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{11\pi }}{6}$ or $\theta = {30^ \circ },{150^ \circ },{210^ \circ },{330^ \circ }$.
Hence, $\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{11\pi }}{6}$ or $\theta = {30^ \circ },{150^ \circ },{210^ \circ },{330^ \circ }$ are solutions of the given equation in the interval $0 \leqslant \theta < {360^ \circ }$.
Note: In above question, we can find the solutions of given equation by plotting the equation, $3{\tan ^2}\theta = 1$ on graph paper and determine all solutions which lie in the interval, $0 \leqslant \theta < {360^ \circ }$.

From the graph paper, we can see that there are four values of $\theta $ in the interval $0 \leqslant \theta < {360^ \circ }$.
So, these will be the solutions of the given equation in the given interval.
Final solution: Hence, $\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{11\pi }}{6}$ or $\theta = {30^ \circ },{150^ \circ },{210^ \circ },{330^ \circ }$ are solutions of the given equation in the interval $0 \leqslant \theta < {360^ \circ }$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Number of valence electrons in Chlorine ion are a 16 class 11 chemistry CBSE

What is the modal class for the following table given class 11 maths CBSE
