
Find the solution for the given trigonometric equation:
\[{\text{tan}}\theta + \tan 2\theta = \tan 3\theta \]
Answer
512.1k+ views
Hint: In this question, we will first convert the given function into sine and cosine function and then use trigonometric identities to the simplified expression. After this we will equate the different terms to zero to get the solution of each and finally combine them to get the solution for the given equation.
Complete step-by-step answer:
Given equation is:
\[{\text{tan}}\theta + \tan 2\theta = \tan 3\theta \]
Now, converting the tangent function in to sine and cosine function, we get:
$\dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
Solving the left hand side, we get:
$\dfrac{{\sin \theta \times \cos 2\theta + \sin 2\theta \times \cos \theta }}{{\cos \theta \times \cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (1)
We know that:
Sin (A+B) =$\sin A\cos B + \cos A\sin B$ .
So, using this identity equation 1 can be written as:
$\dfrac{{\sin (\theta + 2\theta )}}{{\cos \theta \cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (2)
Now, using the identity,$\cos A\cos B = \dfrac{1}{2}\left( {\cos (A - B) + \cos (A + B} \right)$), we get:
$\dfrac{{\sin (\theta + 2\theta )}}{{\dfrac{1}{2}\left( {\cos ( - \theta ) + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
$ \Rightarrow \dfrac{{2\sin (3\theta )}}{{\left( {\cos ( - \theta ) + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
We know that: $\cos ( - \theta ) = \cos \theta $
Therefore, the above equation can written as
$\dfrac{{2\sin (3\theta )}}{{\left( {\cos \theta + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (3)
Now, rearranging the equation 3, we get:
$\begin{gathered}
\dfrac{{2\sin (3\theta )}}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{{\sin 3\theta }}{{\cos 3\theta }} = 0 \\
\\
\end{gathered} $
Taking the $\sin 3\theta $ term common, we get:
\[\sin 3\theta \left( {\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{1}{{\cos 3\theta }}} \right) = 0\]
Since, the products of two terms are zero. So the individual term will also be zero.
$\therefore \sin 3\theta = 0$ (4)
and \[\left( {\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{1}{{\cos 3\theta }}} \right) = 0\] (5)
Solving equation 4, we get:
$3\theta = n\pi $
$ \Rightarrow \theta = \dfrac{{n\pi }}{3}$ (6)
Solving the equation 5, we get:
\[\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} = \dfrac{1}{{\cos 3\theta }}\]
\[ \Rightarrow 2\cos 3\theta = \cos \theta + \cos 3\theta \]
\[ \Rightarrow \cos 3\theta = \cos \theta \]
\[ \Rightarrow \cos 3\theta - \cos \theta = 0\]
Using the difference to product identity of cosine function
$\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$ , we get:
$2\sin 2\theta \sin \theta = 0$
$\therefore \sin 2\theta = 0$ (7)
Also
$\sin \theta = 0$ (8)
Solving equation 7, we get:
$2\theta = n\pi $
$ \Rightarrow \theta = \dfrac{{n\pi }}{2}$ (9)
We know that tangent function is not defined at $\theta = \dfrac{{n\pi }}{2}$
So, the solution given by equation 9 is not the solution for the given question.
Now, solving equation 8, we get
$\theta = n\pi $ (10)
Therefore, the solution for given equation are given by:
$\theta = \dfrac{{n\pi }}{3}$ and $\theta = n\pi $.
Note: In this type question, you can simplify the given equation by converting it into tangent function only and then use the trigonometric identity of tan(A+B)=$\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ to further simplify it and get the equation in product form as $\tan \theta \tan 2\theta (\tan \theta + \tan 2\theta ) = 0$ and then finally find the solution by equating each term to zero. You should never forget to recheck the solution.
Complete step-by-step answer:
Given equation is:
\[{\text{tan}}\theta + \tan 2\theta = \tan 3\theta \]
Now, converting the tangent function in to sine and cosine function, we get:
$\dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
Solving the left hand side, we get:
$\dfrac{{\sin \theta \times \cos 2\theta + \sin 2\theta \times \cos \theta }}{{\cos \theta \times \cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (1)
We know that:
Sin (A+B) =$\sin A\cos B + \cos A\sin B$ .
So, using this identity equation 1 can be written as:
$\dfrac{{\sin (\theta + 2\theta )}}{{\cos \theta \cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (2)
Now, using the identity,$\cos A\cos B = \dfrac{1}{2}\left( {\cos (A - B) + \cos (A + B} \right)$), we get:
$\dfrac{{\sin (\theta + 2\theta )}}{{\dfrac{1}{2}\left( {\cos ( - \theta ) + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
$ \Rightarrow \dfrac{{2\sin (3\theta )}}{{\left( {\cos ( - \theta ) + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
We know that: $\cos ( - \theta ) = \cos \theta $
Therefore, the above equation can written as
$\dfrac{{2\sin (3\theta )}}{{\left( {\cos \theta + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (3)
Now, rearranging the equation 3, we get:
$\begin{gathered}
\dfrac{{2\sin (3\theta )}}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{{\sin 3\theta }}{{\cos 3\theta }} = 0 \\
\\
\end{gathered} $
Taking the $\sin 3\theta $ term common, we get:
\[\sin 3\theta \left( {\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{1}{{\cos 3\theta }}} \right) = 0\]
Since, the products of two terms are zero. So the individual term will also be zero.
$\therefore \sin 3\theta = 0$ (4)
and \[\left( {\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{1}{{\cos 3\theta }}} \right) = 0\] (5)
Solving equation 4, we get:
$3\theta = n\pi $
$ \Rightarrow \theta = \dfrac{{n\pi }}{3}$ (6)
Solving the equation 5, we get:
\[\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} = \dfrac{1}{{\cos 3\theta }}\]
\[ \Rightarrow 2\cos 3\theta = \cos \theta + \cos 3\theta \]
\[ \Rightarrow \cos 3\theta = \cos \theta \]
\[ \Rightarrow \cos 3\theta - \cos \theta = 0\]
Using the difference to product identity of cosine function
$\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$ , we get:
$2\sin 2\theta \sin \theta = 0$
$\therefore \sin 2\theta = 0$ (7)
Also
$\sin \theta = 0$ (8)
Solving equation 7, we get:
$2\theta = n\pi $
$ \Rightarrow \theta = \dfrac{{n\pi }}{2}$ (9)
We know that tangent function is not defined at $\theta = \dfrac{{n\pi }}{2}$
So, the solution given by equation 9 is not the solution for the given question.
Now, solving equation 8, we get
$\theta = n\pi $ (10)
Therefore, the solution for given equation are given by:
$\theta = \dfrac{{n\pi }}{3}$ and $\theta = n\pi $.
Note: In this type question, you can simplify the given equation by converting it into tangent function only and then use the trigonometric identity of tan(A+B)=$\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ to further simplify it and get the equation in product form as $\tan \theta \tan 2\theta (\tan \theta + \tan 2\theta ) = 0$ and then finally find the solution by equating each term to zero. You should never forget to recheck the solution.
Recently Updated Pages
Power set of empty set has exactly subset class 11 maths CBSE

While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
