Answer
Verified
424.5k+ views
Hint: We want to find the slope of the straight line, so we should use the slope-intercept form of the equation of the straight line. The slope-intercept form of a straight line is \[y=mx+c\], here m is the slope of the straight line, and c is the Y-intercept. We are given two points through which the line passes, so these two points must satisfy the equation of the straight line. After substituting, we will get two linear equations in c, and m. we can solve these equations to find the value of m, that is the slope of the straight line.
Complete step by step answer:
The equation of a straight line in slope-intercept form is \[y=mx+c\] , here m is the slope of the line and c is the Y-intercept. We are given that the line passes through the points \[\left( 6,-6 \right)\And \left( 4,5 \right)\]. As the line passes through these points, they must satisfy the equation of the straight line.
Substituting \[\left( 6,-6 \right)\] in the equation of the straight line, we get \[-6=6m+c\]. Substituting \[\left( 4,5 \right)\] in the equation of the straight line, we get \[5=4m+c\]. We get the two equations. We can find the slope by solving them.
Subtracting the first equation from the second, we get
\[\Rightarrow 11=-2m\]
Dividing both sides of the above equation by \[-2\], we get
\[\Rightarrow m=-\dfrac{11}{2}\]
Hence, the slope of the straight line is \[-\dfrac{11}{2}\].
Using the points, we can also plot the graph of the line as follows
Note: We can also find the slope of the straight line using the formula,
\[slope=\dfrac{\Delta y}{\Delta x}\]
Using this formula here, we get
\[\begin{align}
& \Rightarrow slope=\dfrac{-6-5}{6-4} \\
& \therefore slope=-\dfrac{11}{2} \\
\end{align}\]
Thus, we get the same answer from both of the above methods.
Complete step by step answer:
The equation of a straight line in slope-intercept form is \[y=mx+c\] , here m is the slope of the line and c is the Y-intercept. We are given that the line passes through the points \[\left( 6,-6 \right)\And \left( 4,5 \right)\]. As the line passes through these points, they must satisfy the equation of the straight line.
Substituting \[\left( 6,-6 \right)\] in the equation of the straight line, we get \[-6=6m+c\]. Substituting \[\left( 4,5 \right)\] in the equation of the straight line, we get \[5=4m+c\]. We get the two equations. We can find the slope by solving them.
Subtracting the first equation from the second, we get
\[\Rightarrow 11=-2m\]
Dividing both sides of the above equation by \[-2\], we get
\[\Rightarrow m=-\dfrac{11}{2}\]
Hence, the slope of the straight line is \[-\dfrac{11}{2}\].
Using the points, we can also plot the graph of the line as follows
Note: We can also find the slope of the straight line using the formula,
\[slope=\dfrac{\Delta y}{\Delta x}\]
Using this formula here, we get
\[\begin{align}
& \Rightarrow slope=\dfrac{-6-5}{6-4} \\
& \therefore slope=-\dfrac{11}{2} \\
\end{align}\]
Thus, we get the same answer from both of the above methods.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths