
How do you find the slope of the line through the points \[\left( 6,-6 \right)\And \left( 4,5 \right)\]?
Answer
540.3k+ views
Hint: We want to find the slope of the straight line, so we should use the slope-intercept form of the equation of the straight line. The slope-intercept form of a straight line is \[y=mx+c\], here m is the slope of the straight line, and c is the Y-intercept. We are given two points through which the line passes, so these two points must satisfy the equation of the straight line. After substituting, we will get two linear equations in c, and m. we can solve these equations to find the value of m, that is the slope of the straight line.
Complete step by step answer:
The equation of a straight line in slope-intercept form is \[y=mx+c\] , here m is the slope of the line and c is the Y-intercept. We are given that the line passes through the points \[\left( 6,-6 \right)\And \left( 4,5 \right)\]. As the line passes through these points, they must satisfy the equation of the straight line.
Substituting \[\left( 6,-6 \right)\] in the equation of the straight line, we get \[-6=6m+c\]. Substituting \[\left( 4,5 \right)\] in the equation of the straight line, we get \[5=4m+c\]. We get the two equations. We can find the slope by solving them.
Subtracting the first equation from the second, we get
\[\Rightarrow 11=-2m\]
Dividing both sides of the above equation by \[-2\], we get
\[\Rightarrow m=-\dfrac{11}{2}\]
Hence, the slope of the straight line is \[-\dfrac{11}{2}\].
Using the points, we can also plot the graph of the line as follows
Note: We can also find the slope of the straight line using the formula,
\[slope=\dfrac{\Delta y}{\Delta x}\]
Using this formula here, we get
\[\begin{align}
& \Rightarrow slope=\dfrac{-6-5}{6-4} \\
& \therefore slope=-\dfrac{11}{2} \\
\end{align}\]
Thus, we get the same answer from both of the above methods.
Complete step by step answer:
The equation of a straight line in slope-intercept form is \[y=mx+c\] , here m is the slope of the line and c is the Y-intercept. We are given that the line passes through the points \[\left( 6,-6 \right)\And \left( 4,5 \right)\]. As the line passes through these points, they must satisfy the equation of the straight line.
Substituting \[\left( 6,-6 \right)\] in the equation of the straight line, we get \[-6=6m+c\]. Substituting \[\left( 4,5 \right)\] in the equation of the straight line, we get \[5=4m+c\]. We get the two equations. We can find the slope by solving them.
Subtracting the first equation from the second, we get
\[\Rightarrow 11=-2m\]
Dividing both sides of the above equation by \[-2\], we get
\[\Rightarrow m=-\dfrac{11}{2}\]
Hence, the slope of the straight line is \[-\dfrac{11}{2}\].
Using the points, we can also plot the graph of the line as follows
Note: We can also find the slope of the straight line using the formula,
\[slope=\dfrac{\Delta y}{\Delta x}\]
Using this formula here, we get
\[\begin{align}
& \Rightarrow slope=\dfrac{-6-5}{6-4} \\
& \therefore slope=-\dfrac{11}{2} \\
\end{align}\]
Thus, we get the same answer from both of the above methods.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

