
Find the second order derivative of x (log x).
Answer
520.8k+ views
Hint: Derivative means to differentiate the given term. Here the second derivative has been asked which means we have to differentiate two times. Also we will be using the product rule of differentiation.
Complete step-by-step answer:
Derivatives are defined as the varying rate of change of a function with respect to an independent variable. The derivative is primarily used when there is some varying quantity, and the rate of change is not constant. The derivative is used to measure the sensitivity of one variable (dependent variable) with respect to another variable (independent variable).
The second-order derivatives are also used to get an idea of the shape of the graph for the given function.
Product rule: If \[y=uv\] then its differentiation is \[\dfrac{dy}{dx}=u\times \dfrac{dv}{dx}+v\times \dfrac{du}{dx}\].
Let \[y=x\,\log x.......(1)\]
Applying product rule on equation (1) as \[u\] is \[x\] and \[v\] is \[\log x\] and getting the first derivative with respect to \[x\] and also differentiation of \[x\] is \[1\] and differentiation of \[\log x\] is \[\dfrac{1}{x}\]. So we get,
\[\,\dfrac{dy}{dx}=x\times \dfrac{1}{x}+\log x\times 1........(2)\]
Now cancelling similar terms in equation (2) we get,
\[\,\dfrac{dy}{dx}=1+\log x......(3)\]
Again differentiating equation (3) to get the second order derivative with respect to \[x\]
\[\dfrac{d}{dx}\,\left( \dfrac{dy}{dx} \right)=\dfrac{d\left( 1+\log x \right)}{dx}.........(4)\]
Rearranging equation (4) and differentiating the terms on right hand side we get,
\[\begin{align}
& \,\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d(1)}{dx}+\dfrac{d(\log x)}{dx} \\
& \,\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=0+\dfrac{1}{x}=\dfrac{1}{x} \\
\end{align}\] (Differentiation of a constant is always zero i.e. $\dfrac{d(1)}{dx}=0$)
Hence the second order derivative of \[x\,\log x\] is \[\dfrac{1}{x}\].
Note: We need to understand that derivative means differentiation. Also we need to remember the differentiation of x and log x. We can commit a mistake in applying product rule by interchanging u and v in a hurry. Also differentiation of a constant is always zero.
Complete step-by-step answer:
Derivatives are defined as the varying rate of change of a function with respect to an independent variable. The derivative is primarily used when there is some varying quantity, and the rate of change is not constant. The derivative is used to measure the sensitivity of one variable (dependent variable) with respect to another variable (independent variable).
The second-order derivatives are also used to get an idea of the shape of the graph for the given function.
Product rule: If \[y=uv\] then its differentiation is \[\dfrac{dy}{dx}=u\times \dfrac{dv}{dx}+v\times \dfrac{du}{dx}\].
Let \[y=x\,\log x.......(1)\]
Applying product rule on equation (1) as \[u\] is \[x\] and \[v\] is \[\log x\] and getting the first derivative with respect to \[x\] and also differentiation of \[x\] is \[1\] and differentiation of \[\log x\] is \[\dfrac{1}{x}\]. So we get,
\[\,\dfrac{dy}{dx}=x\times \dfrac{1}{x}+\log x\times 1........(2)\]
Now cancelling similar terms in equation (2) we get,
\[\,\dfrac{dy}{dx}=1+\log x......(3)\]
Again differentiating equation (3) to get the second order derivative with respect to \[x\]
\[\dfrac{d}{dx}\,\left( \dfrac{dy}{dx} \right)=\dfrac{d\left( 1+\log x \right)}{dx}.........(4)\]
Rearranging equation (4) and differentiating the terms on right hand side we get,
\[\begin{align}
& \,\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d(1)}{dx}+\dfrac{d(\log x)}{dx} \\
& \,\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=0+\dfrac{1}{x}=\dfrac{1}{x} \\
\end{align}\] (Differentiation of a constant is always zero i.e. $\dfrac{d(1)}{dx}=0$)
Hence the second order derivative of \[x\,\log x\] is \[\dfrac{1}{x}\].
Note: We need to understand that derivative means differentiation. Also we need to remember the differentiation of x and log x. We can commit a mistake in applying product rule by interchanging u and v in a hurry. Also differentiation of a constant is always zero.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
