How do you find the second derivative of $\ln \left( {{x^2} + 1} \right)$?
Answer
Verified
437.7k+ views
Hint: In order to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$, we will consider it as $y$. Then determine the first derivative using $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$. And, we will determine the second derivative using $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$.
Complete step-by-step solution:
We need to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$.
Let us consider $y = \ln \left( {{x^2} + 1} \right)$,
Now, let us differentiate $y$ with respect to $x$.
We know that $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$
Thus, we have,
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\ln \left( {{x^2} + 1} \right)$
$\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}}$
Therefore, let us find the second derivative of $y$ with respect to $x$.
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{d}{{dx}}\left( {\dfrac{{2x}}{{{x^2} + 1}}} \right)$
We know that $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$
Thus, we have,
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{{x^2} + 1.\dfrac{d}{{dx}}\left( {2x} \right) - 2x.\dfrac{d}{{dx}}\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2\left( {{x^2} + 1} \right) - 2x\left( {2x} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2{x^2} + 2 - 4{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
Hence, the second derivative of $y = \ln \left( {{x^2} + 1} \right)$is $\dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$.
Note: A differential equation is an equation with a function and one or more of its derivatives or differentials. $dy$ means an infinitely small change in $y$. $dx$ means an infinitely small change in $x$. Integrating factor technique is used when the differential equation is of the form $\dfrac{{dy}}{{dx}} + p\left( x \right)y = q\left( x \right)$ where $p$ and $q$ are both functions of $x$ only. First-order differential equation is of the form $\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)$ where $P$ and $Q$ are both functions of $x$ and the first derivative of $y$. The order of the differential equation is the order of the highest order derivative present in the equation. The degree of the differential equation is the power of the highest order derivative, where the original equation is represented in the form of a polynomial equation in derivatives such as $\dfrac{{dy}}{{dx}},\,\dfrac{{{d^2}y}}{{d{x^2}}},\,\dfrac{{{d^3}y}}{{d{x^3}}} \ldots $
In our world things change, and describing how they change often ends up as a differential equation. Differential equations can describe how populations change, how heat moves, how springs vibrate, how radioactive material decays and much more. They are a very natural way to describe many things in the universe.
Complete step-by-step solution:
We need to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$.
Let us consider $y = \ln \left( {{x^2} + 1} \right)$,
Now, let us differentiate $y$ with respect to $x$.
We know that $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$
Thus, we have,
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\ln \left( {{x^2} + 1} \right)$
$\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}}$
Therefore, let us find the second derivative of $y$ with respect to $x$.
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{d}{{dx}}\left( {\dfrac{{2x}}{{{x^2} + 1}}} \right)$
We know that $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$
Thus, we have,
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{{x^2} + 1.\dfrac{d}{{dx}}\left( {2x} \right) - 2x.\dfrac{d}{{dx}}\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2\left( {{x^2} + 1} \right) - 2x\left( {2x} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2{x^2} + 2 - 4{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
Hence, the second derivative of $y = \ln \left( {{x^2} + 1} \right)$is $\dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$.
Note: A differential equation is an equation with a function and one or more of its derivatives or differentials. $dy$ means an infinitely small change in $y$. $dx$ means an infinitely small change in $x$. Integrating factor technique is used when the differential equation is of the form $\dfrac{{dy}}{{dx}} + p\left( x \right)y = q\left( x \right)$ where $p$ and $q$ are both functions of $x$ only. First-order differential equation is of the form $\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)$ where $P$ and $Q$ are both functions of $x$ and the first derivative of $y$. The order of the differential equation is the order of the highest order derivative present in the equation. The degree of the differential equation is the power of the highest order derivative, where the original equation is represented in the form of a polynomial equation in derivatives such as $\dfrac{{dy}}{{dx}},\,\dfrac{{{d^2}y}}{{d{x^2}}},\,\dfrac{{{d^3}y}}{{d{x^3}}} \ldots $
In our world things change, and describing how they change often ends up as a differential equation. Differential equations can describe how populations change, how heat moves, how springs vibrate, how radioactive material decays and much more. They are a very natural way to describe many things in the universe.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE