Answer
Verified
409.8k+ views
Hint: In order to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$, we will consider it as $y$. Then determine the first derivative using $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$. And, we will determine the second derivative using $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$.
Complete step-by-step solution:
We need to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$.
Let us consider $y = \ln \left( {{x^2} + 1} \right)$,
Now, let us differentiate $y$ with respect to $x$.
We know that $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$
Thus, we have,
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\ln \left( {{x^2} + 1} \right)$
$\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}}$
Therefore, let us find the second derivative of $y$ with respect to $x$.
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{d}{{dx}}\left( {\dfrac{{2x}}{{{x^2} + 1}}} \right)$
We know that $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$
Thus, we have,
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{{x^2} + 1.\dfrac{d}{{dx}}\left( {2x} \right) - 2x.\dfrac{d}{{dx}}\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2\left( {{x^2} + 1} \right) - 2x\left( {2x} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2{x^2} + 2 - 4{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
Hence, the second derivative of $y = \ln \left( {{x^2} + 1} \right)$is $\dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$.
Note: A differential equation is an equation with a function and one or more of its derivatives or differentials. $dy$ means an infinitely small change in $y$. $dx$ means an infinitely small change in $x$. Integrating factor technique is used when the differential equation is of the form $\dfrac{{dy}}{{dx}} + p\left( x \right)y = q\left( x \right)$ where $p$ and $q$ are both functions of $x$ only. First-order differential equation is of the form $\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)$ where $P$ and $Q$ are both functions of $x$ and the first derivative of $y$. The order of the differential equation is the order of the highest order derivative present in the equation. The degree of the differential equation is the power of the highest order derivative, where the original equation is represented in the form of a polynomial equation in derivatives such as $\dfrac{{dy}}{{dx}},\,\dfrac{{{d^2}y}}{{d{x^2}}},\,\dfrac{{{d^3}y}}{{d{x^3}}} \ldots $
In our world things change, and describing how they change often ends up as a differential equation. Differential equations can describe how populations change, how heat moves, how springs vibrate, how radioactive material decays and much more. They are a very natural way to describe many things in the universe.
Complete step-by-step solution:
We need to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$.
Let us consider $y = \ln \left( {{x^2} + 1} \right)$,
Now, let us differentiate $y$ with respect to $x$.
We know that $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$
Thus, we have,
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\ln \left( {{x^2} + 1} \right)$
$\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}}$
Therefore, let us find the second derivative of $y$ with respect to $x$.
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{d}{{dx}}\left( {\dfrac{{2x}}{{{x^2} + 1}}} \right)$
We know that $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$
Thus, we have,
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{{x^2} + 1.\dfrac{d}{{dx}}\left( {2x} \right) - 2x.\dfrac{d}{{dx}}\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2\left( {{x^2} + 1} \right) - 2x\left( {2x} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2{x^2} + 2 - 4{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
Hence, the second derivative of $y = \ln \left( {{x^2} + 1} \right)$is $\dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$.
Note: A differential equation is an equation with a function and one or more of its derivatives or differentials. $dy$ means an infinitely small change in $y$. $dx$ means an infinitely small change in $x$. Integrating factor technique is used when the differential equation is of the form $\dfrac{{dy}}{{dx}} + p\left( x \right)y = q\left( x \right)$ where $p$ and $q$ are both functions of $x$ only. First-order differential equation is of the form $\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)$ where $P$ and $Q$ are both functions of $x$ and the first derivative of $y$. The order of the differential equation is the order of the highest order derivative present in the equation. The degree of the differential equation is the power of the highest order derivative, where the original equation is represented in the form of a polynomial equation in derivatives such as $\dfrac{{dy}}{{dx}},\,\dfrac{{{d^2}y}}{{d{x^2}}},\,\dfrac{{{d^3}y}}{{d{x^3}}} \ldots $
In our world things change, and describing how they change often ends up as a differential equation. Differential equations can describe how populations change, how heat moves, how springs vibrate, how radioactive material decays and much more. They are a very natural way to describe many things in the universe.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell