
How do you find the rest of the zeros given one of the zero is $\dfrac{1}{2}$ and the function $f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9$?
Answer
532.8k+ views
Hint: We take the help of long-term division. From the given root value of $\dfrac{1}{2}$ we find the factor as $2x-1$. Then we factorise the last quadratic equation using a quadratic solving process. We find the factored form and also the roots.
Complete step by step solution:
It is given that the zero is $\dfrac{1}{2}$ for the function $f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9$.
Therefore, $x=\dfrac{1}{2}$ is a root for $f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9$.
Simplifying we get $2x-1$ as the factor of $f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9$.
Now we divide $f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9$ by $2x-1$.
\[2x-1\overset{2{{x}^{3}}-13{{x}^{2}}+24x-9}{\overline{\left){\begin{align}
& 4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9 \\
& \underline{4{{x}^{4}}-2{{x}^{3}}} \\
& -26{{x}^{3}}+61{{x}^{2}}-42x+9 \\
& \underline{-26{{x}^{3}}+13{{x}^{2}}} \\
& 48{{x}^{2}}-42x+9 \\
& \underline{48{{x}^{2}}-24x} \\
& -18x+9 \\
& \underline{-18x+9} \\
& 0 \\
\end{align}}\right.}}\]
The quotient is \[2{{x}^{3}}-13{{x}^{2}}+24x-9\] and we have to factorise it again.
We again find the value of $x=a$ for which the function $f\left( x \right)=2{{x}^{3}}-13{{x}^{2}}+24x-9=0$.
We take $x=a=3$.
We can see $f\left( 3 \right)=2\times {{3}^{3}}-13\times {{3}^{2}}+24\times 3-9=54-117+72-9=0$.
So, the root of the $f\left( x \right)=2{{x}^{3}}-13{{x}^{2}}+24x-9$ will be the function $\left( x-3 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
Therefore, the term $\left( x-3 \right)$ is a factor of the polynomial \[2{{x}^{3}}-13{{x}^{2}}+24x-9\].
\[x-3\overset{2{{x}^{2}}-7x+3}{\overline{\left){\begin{align}
& 2{{x}^{3}}-13{{x}^{2}}+24x-9 \\
& \underline{2{{x}^{3}}-6{{x}^{2}}} \\
& -7{{x}^{2}}+24x-9 \\
& \underline{-7{{x}^{2}}+21x} \\
& 3x-9 \\
& \underline{3x-9} \\
& 0 \\
\end{align}}\right.}}\]
Now we break the function \[2{{x}^{2}}-7x+3\] into a quadratic form.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have $2{{x}^{2}}-7x+3=0$. The values of a, b, c are $2,-7,3$ respectively.
We put the values and get x as $x=\dfrac{7\pm \sqrt{{{7}^{2}}-4\times 2\times 3}}{2\times 2}=\dfrac{7\pm \sqrt{25}}{4}=\dfrac{7\pm 5}{4}=3,\dfrac{1}{2}$.
Therefore, the other roots of the function $f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9$ are $x=3,3,\dfrac{1}{2}$.
$f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9={{\left( x-3 \right)}^{2}}{{\left( 2x-1 \right)}^{2}}$ is the factored form.
Note: In the factorisation we have two unique roots. They are in order of 2. Therefore, the total number of roots always will be 4 which is equal to the power value of the polynomial.
Complete step by step solution:
It is given that the zero is $\dfrac{1}{2}$ for the function $f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9$.
Therefore, $x=\dfrac{1}{2}$ is a root for $f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9$.
Simplifying we get $2x-1$ as the factor of $f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9$.
Now we divide $f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9$ by $2x-1$.
\[2x-1\overset{2{{x}^{3}}-13{{x}^{2}}+24x-9}{\overline{\left){\begin{align}
& 4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9 \\
& \underline{4{{x}^{4}}-2{{x}^{3}}} \\
& -26{{x}^{3}}+61{{x}^{2}}-42x+9 \\
& \underline{-26{{x}^{3}}+13{{x}^{2}}} \\
& 48{{x}^{2}}-42x+9 \\
& \underline{48{{x}^{2}}-24x} \\
& -18x+9 \\
& \underline{-18x+9} \\
& 0 \\
\end{align}}\right.}}\]
The quotient is \[2{{x}^{3}}-13{{x}^{2}}+24x-9\] and we have to factorise it again.
We again find the value of $x=a$ for which the function $f\left( x \right)=2{{x}^{3}}-13{{x}^{2}}+24x-9=0$.
We take $x=a=3$.
We can see $f\left( 3 \right)=2\times {{3}^{3}}-13\times {{3}^{2}}+24\times 3-9=54-117+72-9=0$.
So, the root of the $f\left( x \right)=2{{x}^{3}}-13{{x}^{2}}+24x-9$ will be the function $\left( x-3 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
Therefore, the term $\left( x-3 \right)$ is a factor of the polynomial \[2{{x}^{3}}-13{{x}^{2}}+24x-9\].
\[x-3\overset{2{{x}^{2}}-7x+3}{\overline{\left){\begin{align}
& 2{{x}^{3}}-13{{x}^{2}}+24x-9 \\
& \underline{2{{x}^{3}}-6{{x}^{2}}} \\
& -7{{x}^{2}}+24x-9 \\
& \underline{-7{{x}^{2}}+21x} \\
& 3x-9 \\
& \underline{3x-9} \\
& 0 \\
\end{align}}\right.}}\]
Now we break the function \[2{{x}^{2}}-7x+3\] into a quadratic form.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have $2{{x}^{2}}-7x+3=0$. The values of a, b, c are $2,-7,3$ respectively.
We put the values and get x as $x=\dfrac{7\pm \sqrt{{{7}^{2}}-4\times 2\times 3}}{2\times 2}=\dfrac{7\pm \sqrt{25}}{4}=\dfrac{7\pm 5}{4}=3,\dfrac{1}{2}$.
Therefore, the other roots of the function $f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9$ are $x=3,3,\dfrac{1}{2}$.
$f\left( x \right)=4{{x}^{4}}-28{{x}^{3}}+61{{x}^{2}}-42x+9={{\left( x-3 \right)}^{2}}{{\left( 2x-1 \right)}^{2}}$ is the factored form.
Note: In the factorisation we have two unique roots. They are in order of 2. Therefore, the total number of roots always will be 4 which is equal to the power value of the polynomial.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

