
Find the remainder when \[p\left( x \right)={{x}^{3}}-6{{x}^{2}}+14x-3\] is divisible by \[g\left( x \right)=1-2x\] and verify the result by long division.
Answer
509.4k+ views
Hint: In this problem, we have to divide the given equation and the factor. We can use the polynomial long division method to divide the given problem by dividing the highest order term in the dividend to the highest order term in the divisor step by step until we get the remainder.
Complete step by step solution:
We know that the given division is,
\[\dfrac{{{x}^{3}}-6{{x}^{2}}+14x-3}{-2x+1}\]
Now we can set up the polynomials to be divided in long division, we get
\[-2x+1\overset{{}}{\overline{\left){{{x}^{3}}-6{{x}^{2}}+14x-3}\right.}}\]
Now we can divide the highest order term in the dividend \[{{x}^{3}}\] by the highest order term in the divisor x, we get
\[-2x+1\overset{-\dfrac{1}{2}{{x}^{2}}}{\overline{\left){{{x}^{3}}-6{{x}^{2}}+14x-3}\right.}}\]
We can now multiply the quotient term to the divisor, we get
\[-2x+1\overset{-\dfrac{1}{2}{{x}^{2}}}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& {{x}^{3}}-\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}\]
We know that the expression is to be subtracted in the dividend, so we can change the sign in \[{{x}^{3}}-\dfrac{1}{2}{{x}^{2}}\], we get
\[\begin{align}
& -2x+1\underline{\overset{-\dfrac{1}{2}{{x}^{2}}}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& -{{x}^{3}}+\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}} \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+14x \\
\end{align}\]
Now we can bring down the next term from the dividend to the current dividend and multiply the new quotient to the divisor and write it, we get
\[\begin{align}
& -2x+1\underline{\overset{-\dfrac{1}{2}{{x}^{2}}+\dfrac{11}{4}x}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& -{{x}^{3}}+\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}} \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+14x \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+\dfrac{11}{4} \\
\end{align}\]
We can now multiply the new quotient to the divisor, then subtract those expression to get the next dividend value, we get
\[\begin{align}
& -2x+1\underline{\overset{-\dfrac{1}{2}{{x}^{2}}+\dfrac{11}{4}x}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& -{{x}^{3}}+\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}} \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+14x \\
& \text{ }\underline{+\dfrac{11}{2}{{x}^{2}}-\dfrac{11}{4}x} \\
& \text{ }\dfrac{45}{4}x-3 \\
\end{align}\]
Now we can bring down the next term to the current dividend, we can divide the highest order term in the dividend 31x by the divisor x and we can multiply the new quotient term by the divisor.
\[\begin{align}
& -2x+1\underline{\overset{-\dfrac{1}{2}{{x}^{2}}+\dfrac{11}{4}x-\dfrac{45}{8}}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& -{{x}^{3}}+\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}} \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+14x \\
& \text{ }\underline{+\dfrac{11}{2}{{x}^{2}}-\dfrac{11}{4}x} \\
& \text{ }\dfrac{45}{4}x-3 \\
& \text{ }\underline{\dfrac{45}{4}x-\dfrac{45}{8}} \\
\end{align}\]
We can now Subtract the expression to get the remainder
\[\begin{align}
& -2x+1\underline{\overset{-\dfrac{1}{2}{{x}^{2}}+\dfrac{11}{4}x-\dfrac{45}{8}}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& -{{x}^{3}}+\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}} \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+14x \\
& \text{ }\underline{+\dfrac{11}{2}{{x}^{2}}-\dfrac{11}{4}x} \\
& \text{ }\dfrac{45}{4}x-3 \\
& \text{ }\underline{-\dfrac{45}{4}x+\dfrac{45}{8}} \\
& \text{ }\dfrac{21}{8} \\
\end{align}\]
Therefore, the remainder is \[\dfrac{21}{8}\].
Note: Students make mistakes while finding the answer using polynomial long division. We should know how to find the answer using polynomial long division step by step. We will also make mistakes while hanging the signs in order to cancel the step consequently.
Complete step by step solution:
We know that the given division is,
\[\dfrac{{{x}^{3}}-6{{x}^{2}}+14x-3}{-2x+1}\]
Now we can set up the polynomials to be divided in long division, we get
\[-2x+1\overset{{}}{\overline{\left){{{x}^{3}}-6{{x}^{2}}+14x-3}\right.}}\]
Now we can divide the highest order term in the dividend \[{{x}^{3}}\] by the highest order term in the divisor x, we get
\[-2x+1\overset{-\dfrac{1}{2}{{x}^{2}}}{\overline{\left){{{x}^{3}}-6{{x}^{2}}+14x-3}\right.}}\]
We can now multiply the quotient term to the divisor, we get
\[-2x+1\overset{-\dfrac{1}{2}{{x}^{2}}}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& {{x}^{3}}-\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}\]
We know that the expression is to be subtracted in the dividend, so we can change the sign in \[{{x}^{3}}-\dfrac{1}{2}{{x}^{2}}\], we get
\[\begin{align}
& -2x+1\underline{\overset{-\dfrac{1}{2}{{x}^{2}}}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& -{{x}^{3}}+\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}} \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+14x \\
\end{align}\]
Now we can bring down the next term from the dividend to the current dividend and multiply the new quotient to the divisor and write it, we get
\[\begin{align}
& -2x+1\underline{\overset{-\dfrac{1}{2}{{x}^{2}}+\dfrac{11}{4}x}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& -{{x}^{3}}+\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}} \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+14x \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+\dfrac{11}{4} \\
\end{align}\]
We can now multiply the new quotient to the divisor, then subtract those expression to get the next dividend value, we get
\[\begin{align}
& -2x+1\underline{\overset{-\dfrac{1}{2}{{x}^{2}}+\dfrac{11}{4}x}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& -{{x}^{3}}+\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}} \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+14x \\
& \text{ }\underline{+\dfrac{11}{2}{{x}^{2}}-\dfrac{11}{4}x} \\
& \text{ }\dfrac{45}{4}x-3 \\
\end{align}\]
Now we can bring down the next term to the current dividend, we can divide the highest order term in the dividend 31x by the divisor x and we can multiply the new quotient term by the divisor.
\[\begin{align}
& -2x+1\underline{\overset{-\dfrac{1}{2}{{x}^{2}}+\dfrac{11}{4}x-\dfrac{45}{8}}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& -{{x}^{3}}+\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}} \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+14x \\
& \text{ }\underline{+\dfrac{11}{2}{{x}^{2}}-\dfrac{11}{4}x} \\
& \text{ }\dfrac{45}{4}x-3 \\
& \text{ }\underline{\dfrac{45}{4}x-\dfrac{45}{8}} \\
\end{align}\]
We can now Subtract the expression to get the remainder
\[\begin{align}
& -2x+1\underline{\overset{-\dfrac{1}{2}{{x}^{2}}+\dfrac{11}{4}x-\dfrac{45}{8}}{\overline{\left){\begin{align}
& {{x}^{3}}-6{{x}^{2}}+14x-3 \\
& -{{x}^{3}}+\dfrac{1}{2}{{x}^{2}} \\
\end{align}}\right.}}} \\
& \text{ }-\dfrac{11}{2}{{x}^{2}}+14x \\
& \text{ }\underline{+\dfrac{11}{2}{{x}^{2}}-\dfrac{11}{4}x} \\
& \text{ }\dfrac{45}{4}x-3 \\
& \text{ }\underline{-\dfrac{45}{4}x+\dfrac{45}{8}} \\
& \text{ }\dfrac{21}{8} \\
\end{align}\]
Therefore, the remainder is \[\dfrac{21}{8}\].
Note: Students make mistakes while finding the answer using polynomial long division. We should know how to find the answer using polynomial long division step by step. We will also make mistakes while hanging the signs in order to cancel the step consequently.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

