Find the ratio in which the point $ P(5,4,-6) $ divides the line segment joining the points $ A(3,2,-4) $ and $ B(9,8,-10) $ . Also, find the harmonic conjugate of $ P $ .
Answer
Verified
477.6k+ views
Hint: In order to solve this question, we have to apply the section formula which is if point $ P(x,y,z) $ divides the line segment joining the points $ A({{x}_{1}},{{y}_{1}},{{z}_{1}}) $ and $ B({{x}_{2}},{{y}_{2}},{{z}_{2}}) $ in the ratio $ m:n $ , then
$ \therefore x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n} $ , $ y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} $ and $ z=\dfrac{m{{z}_{2}}+n{{z}_{1}}}{m+n} $
After applying the section formula, get the ratio in which $ P $ divides $ AB $ . With that ratio we have to find the harmonic conjugate of $ P $ and then get the final answer.
Complete step-by-step answer:
Let’s suppose that point $ P $ divides the line segment $ AB $ in the ratio $ k:1 $ .
In order to find the value of $ k $ we have to apply a section formula.
According to section formula if point $ P(x,y,z) $ divides the line segment joining the points $ A({{x}_{1}},{{y}_{1}},{{z}_{1}}) $ and $ B({{x}_{2}},{{y}_{2}},{{z}_{2}}) $ in the ratio $ k:1 $ , then
$ \therefore x=\dfrac{k{{x}_{2}}+{{x}_{1}}}{k+1} $ , $ y=\dfrac{k{{y}_{2}}+{{y}_{1}}}{k+1} $ and $ z=\dfrac{k{{z}_{2}}+{{z}_{1}}}{k+1} $
Using the same logic, we have $ P(5,4,-6) $ , $ A(3,2,-4) $ and $ B(9,8,-10) $ , applying the section formula, we get
$ \Rightarrow 5=\dfrac{9k+3}{k+1} $
$ \Rightarrow 5k+5=9k+3 $
$ \Rightarrow 4k=2 $
$ \Rightarrow k=\dfrac{2}{4}=\dfrac{1}{2} $
Hence, $ P $ divides the line segment $ AB $ in the ratio $ \dfrac{1}{2}:1 $ , or we can say that $ 1:2 $ .
Now, let’s suppose $ Q(a,b,c) $ is the harmonic conjugate of $ P $ .
If $ P $ and $ Q $ are the harmonic conjugate, that means the ratio in which $ P $ divides the line segment $ AB $ internally $ Q $ also have to divide it in that ratio externally.
So, now $ Q $ divides the line segment $ AB $ in the ratio $ 1:2 $ externally.
Externally division means if point $ Q(x,y,z) $ divides the line segment joining the points $ A({{x}_{1}},{{y}_{1}},{{z}_{1}}) $ and $ B({{x}_{2}},{{y}_{2}},{{z}_{2}}) $ externally in the ratio $ m:n $ , then
$ \therefore x=\dfrac{m{{x}_{2}}-n{{x}_{1}}}{m-n} $ , $ y=\dfrac{m{{y}_{2}}-n{{y}_{1}}}{m-n} $ and $ z=\dfrac{m{{z}_{2}}-n{{z}_{1}}}{m-n} $
Using the same concept, we get
$ \Rightarrow a=\dfrac{9\times 1-2\times 3}{1-2}=\dfrac{9-6}{-1}=-3 $
$ \Rightarrow b=\dfrac{8\times 1-2\times 2}{1-2}=\dfrac{8-4}{-1}=-4 $
$ \Rightarrow c=\dfrac{-10\times 1-2\times -4}{1-2}=\dfrac{-10+8}{-1}=2 $
Hence, $ Q(-3,-4,2) $ .
So, the harmonic conjugate of $ P $ is $ (-3,-4,2) $ .
Note: In this question we just have to understand the difference between external and internal division of a line segment. First we have to apply internal division in order to find the ratio and then apply the external division formula to get the harmonic conjugate. Students often confuse external and internal division so apply the formulas carefully.
$ \therefore x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n} $ , $ y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} $ and $ z=\dfrac{m{{z}_{2}}+n{{z}_{1}}}{m+n} $
After applying the section formula, get the ratio in which $ P $ divides $ AB $ . With that ratio we have to find the harmonic conjugate of $ P $ and then get the final answer.
Complete step-by-step answer:
Let’s suppose that point $ P $ divides the line segment $ AB $ in the ratio $ k:1 $ .
In order to find the value of $ k $ we have to apply a section formula.
According to section formula if point $ P(x,y,z) $ divides the line segment joining the points $ A({{x}_{1}},{{y}_{1}},{{z}_{1}}) $ and $ B({{x}_{2}},{{y}_{2}},{{z}_{2}}) $ in the ratio $ k:1 $ , then
$ \therefore x=\dfrac{k{{x}_{2}}+{{x}_{1}}}{k+1} $ , $ y=\dfrac{k{{y}_{2}}+{{y}_{1}}}{k+1} $ and $ z=\dfrac{k{{z}_{2}}+{{z}_{1}}}{k+1} $
Using the same logic, we have $ P(5,4,-6) $ , $ A(3,2,-4) $ and $ B(9,8,-10) $ , applying the section formula, we get
$ \Rightarrow 5=\dfrac{9k+3}{k+1} $
$ \Rightarrow 5k+5=9k+3 $
$ \Rightarrow 4k=2 $
$ \Rightarrow k=\dfrac{2}{4}=\dfrac{1}{2} $
Hence, $ P $ divides the line segment $ AB $ in the ratio $ \dfrac{1}{2}:1 $ , or we can say that $ 1:2 $ .
Now, let’s suppose $ Q(a,b,c) $ is the harmonic conjugate of $ P $ .
If $ P $ and $ Q $ are the harmonic conjugate, that means the ratio in which $ P $ divides the line segment $ AB $ internally $ Q $ also have to divide it in that ratio externally.
So, now $ Q $ divides the line segment $ AB $ in the ratio $ 1:2 $ externally.
Externally division means if point $ Q(x,y,z) $ divides the line segment joining the points $ A({{x}_{1}},{{y}_{1}},{{z}_{1}}) $ and $ B({{x}_{2}},{{y}_{2}},{{z}_{2}}) $ externally in the ratio $ m:n $ , then
$ \therefore x=\dfrac{m{{x}_{2}}-n{{x}_{1}}}{m-n} $ , $ y=\dfrac{m{{y}_{2}}-n{{y}_{1}}}{m-n} $ and $ z=\dfrac{m{{z}_{2}}-n{{z}_{1}}}{m-n} $
Using the same concept, we get
$ \Rightarrow a=\dfrac{9\times 1-2\times 3}{1-2}=\dfrac{9-6}{-1}=-3 $
$ \Rightarrow b=\dfrac{8\times 1-2\times 2}{1-2}=\dfrac{8-4}{-1}=-4 $
$ \Rightarrow c=\dfrac{-10\times 1-2\times -4}{1-2}=\dfrac{-10+8}{-1}=2 $
Hence, $ Q(-3,-4,2) $ .
So, the harmonic conjugate of $ P $ is $ (-3,-4,2) $ .
Note: In this question we just have to understand the difference between external and internal division of a line segment. First we have to apply internal division in order to find the ratio and then apply the external division formula to get the harmonic conjugate. Students often confuse external and internal division so apply the formulas carefully.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Biology: Engaging Questions & Answers for Success
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE