
Find the ratio in which the point (- 3, p) divides the line segment joining the points (-5, -4) and (-2, 3). Hence, find the value of p.
Answer
601.2k+ views
Hint: In this question to find the values of p, we will assume that the point (-3, p) divides the line joining the points (-5, -4) and (-2, 3) in the ratio of k : 1. And will use the section formula to find the value of p and k.
Complete step-by-step solution -
Now, we will use the section formula. The section formula tells us the coordinates of a point which divides a given line segment into two parts such that their lengths are in the ratio m: n. The Section formula to find a point (x, y) is
x = $\dfrac{{{\text{m}}{{\text{x}}_2}{\text{ + n}}{{\text{x}}_1}}}{{{\text{m + n}}}}$
y = $\dfrac{{{\text{m}}{{\text{y}}_2}{\text{ + n}}{{\text{y}}_1}}}{{{\text{m + n}}}}$
Here we are given two points. Let say A (-5, -4) and B (-2, 3) makes a line segment AB. The line segment AB is divided at point Q, so, we will apply section formula at point Q.
Let Q (-3, p) divide the line segment AB in the ratio k : 1.
So, applying section formula at point Q (-3, p), we get
x – coordinate of Q = $\dfrac{{k\left( { - 2} \right) + 1\left( { - 5} \right)}}{{k + 1}}$ = $\dfrac{{ - 2k - 5}}{{k + 1}}$
y – coordinate of Q = $\dfrac{{k\left( 3 \right) + 1\left( { - 4} \right)}}{{k + 1}} = \dfrac{{3k - 4}}{{k + 1}}$
Now as we know that the coordinates of point Q is (-3, p)
So, on comparing the x – coordinate of point Q. We get,
$\dfrac{{ - 2k - 5}}{{k + 1}} = - 3$
Cross-multiplying above equation to find the value of k. We get,
– 2k – 5 = – 3(k + 1)
– 2k – 5 = – 3k – 3
Adding 3k + 5 to both the sides of the above equation. We get,
k = 2
Now to find the value of p we had to compare the y -coordinate of point Q with p and put the value of k = 2.
So, p = $\dfrac{{3k - 4}}{{k + 1}}$
Now putting the value of k as 2 in the RHS of the above equation. We get,
p = $\dfrac{{3\left( 2 \right) - 4}}{{2 + 1}} = \dfrac{2}{3}$
Hence, the point $\left( { - 3,\dfrac{2}{3}} \right)$ divides the line segment joining the points (-5, -4) and (-2, 3) in ratio 2 : 1.
Note: While solving such types of questions, it is important to apply the section formula correctly. Most of the students made a mistake while applying the section formula. They replaced m from n and n from m. Also, apply the proper ratio for finding the coordinates of a point. Also, when only you have to find the value of a given variable, apply only that formula to find the value of the variable, for example if you are given that the x – coordinate of point is k, so you have to apply only the formula to find the x – coordinate of point.
Complete step-by-step solution -
Now, we will use the section formula. The section formula tells us the coordinates of a point which divides a given line segment into two parts such that their lengths are in the ratio m: n. The Section formula to find a point (x, y) is
x = $\dfrac{{{\text{m}}{{\text{x}}_2}{\text{ + n}}{{\text{x}}_1}}}{{{\text{m + n}}}}$
y = $\dfrac{{{\text{m}}{{\text{y}}_2}{\text{ + n}}{{\text{y}}_1}}}{{{\text{m + n}}}}$
Here we are given two points. Let say A (-5, -4) and B (-2, 3) makes a line segment AB. The line segment AB is divided at point Q, so, we will apply section formula at point Q.
Let Q (-3, p) divide the line segment AB in the ratio k : 1.
So, applying section formula at point Q (-3, p), we get
x – coordinate of Q = $\dfrac{{k\left( { - 2} \right) + 1\left( { - 5} \right)}}{{k + 1}}$ = $\dfrac{{ - 2k - 5}}{{k + 1}}$
y – coordinate of Q = $\dfrac{{k\left( 3 \right) + 1\left( { - 4} \right)}}{{k + 1}} = \dfrac{{3k - 4}}{{k + 1}}$
Now as we know that the coordinates of point Q is (-3, p)
So, on comparing the x – coordinate of point Q. We get,
$\dfrac{{ - 2k - 5}}{{k + 1}} = - 3$
Cross-multiplying above equation to find the value of k. We get,
– 2k – 5 = – 3(k + 1)
– 2k – 5 = – 3k – 3
Adding 3k + 5 to both the sides of the above equation. We get,
k = 2
Now to find the value of p we had to compare the y -coordinate of point Q with p and put the value of k = 2.
So, p = $\dfrac{{3k - 4}}{{k + 1}}$
Now putting the value of k as 2 in the RHS of the above equation. We get,
p = $\dfrac{{3\left( 2 \right) - 4}}{{2 + 1}} = \dfrac{2}{3}$
Hence, the point $\left( { - 3,\dfrac{2}{3}} \right)$ divides the line segment joining the points (-5, -4) and (-2, 3) in ratio 2 : 1.
Note: While solving such types of questions, it is important to apply the section formula correctly. Most of the students made a mistake while applying the section formula. They replaced m from n and n from m. Also, apply the proper ratio for finding the coordinates of a point. Also, when only you have to find the value of a given variable, apply only that formula to find the value of the variable, for example if you are given that the x – coordinate of point is k, so you have to apply only the formula to find the x – coordinate of point.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

