Find the ratio in which the line $ x - 3y = 0 $ divides the line segment joining the points $ ( - 2, - 5)\,\,and\,\,\left( {6,3} \right) $ . Find the coordinate of the point of intersection.
Answer
Verified
459.6k+ views
Hint: To find ratio we first let ratio be $ k:1 $ and then using section formulas to find coordinate of point and then using coordinate in given line as point also lie on line and then solving an equation formed to get value of k or required ratio in which line divides given line segment.
Formulas used: Section formula: $ x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},\,\,y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}} $
Complete step-by-step answer:
Points on the line segment are $ ( - 2, - 5)\,\,and\,\,\left( {6,3} \right) $ .
To find the required ratio.
We first let the ratio be $ k:1 $ . In which line segment $ x - 3y = 0 $ divides points $ ( - 2, - 5)\,\,and\,\,\left( {6,3} \right) $ .
Then by using section formula coordinate of point C will be given as:
$
x = \dfrac{{6(k) + 1( - 2)}}{{k + 1}},\,\,y = \dfrac{{3(k) + 1( - 5)}}{{k + 1}} \\
x = \dfrac{{6k - 2}}{{k + 1}},\,\,y = \dfrac{{3k - 5}}{{k + 1}} \\
$
Therefore, coordinate of the point $ C\left( {\dfrac{{6k - 2}}{{k + 1}},\dfrac{{3k - 5}}{{k + 1}}} \right) $
Also, point $ C\left( {\dfrac{{6k - 2}}{{k + 1}},\dfrac{{3k - 5}}{{k + 1}}} \right) $ line on the line $ x - 3y = 0 $ . Therefore, point $ C\left( {\dfrac{{6k - 2}}{{k + 1}},\dfrac{{3k - 5}}{{k + 1}}} \right) $ will satisfy given line.
Substituting values in given line:
\[
\dfrac{{6k - 2}}{{k + 1}} - 3\left( {\dfrac{{3k - 5}}{{k + 1}}} \right) = 0 \\
\Rightarrow \dfrac{{6k - 2 - 9k + 15}}{{k + 1}} = 0 \\
\Rightarrow \dfrac{{ - 3k + 13}}{{k + 1}} \;
\Rightarrow - 3k + 13 = 0 \\
\Rightarrow - 3k = - 13 \\
\Rightarrow k = \dfrac{{13}}{3} \;
\]
Therefore, line $ x - 3y = 0 $ divides line segment joining points $ ( - 2, - 5)\,\,and\,\,\left( {6,3} \right) $ is $ 13:3 $ .
To find the point of intersection or intercept we substitute the value of ratio obtained above in section formula. We have,
$ C\left( {\dfrac{{6k - 2}}{{k + 1}},\dfrac{{3k - 5}}{{k + 1}}} \right) $
$
\Rightarrow C\left( {\dfrac{{6\left( {\dfrac{{13}}{3}} \right) - 2}}{{\dfrac{{13}}{3} + 1}},\dfrac{{3\left( {\dfrac{{13}}{3}} \right) - 5}}{{\dfrac{{13}}{3} + 1}}} \right) \\
\Rightarrow C\left( {\dfrac{{\dfrac{{78}}{3} - 2}}{{\dfrac{{16}}{3}}},\dfrac{{\dfrac{{39}}{3} - 5}}{{\dfrac{{16}}{3}}}} \right) \\
\Rightarrow C\left( {\dfrac{{\dfrac{{78 - 6}}{3}}}{{\dfrac{{16}}{3}}},\dfrac{{\dfrac{{39 - 15}}{3}}}{{\dfrac{{16}}{3}}}} \right) \\
\Rightarrow C\left( {\dfrac{{\dfrac{{72}}{3}}}{{\dfrac{{16}}{3}}},\dfrac{{\dfrac{{24}}{3}}}{{\dfrac{{16}}{3}}}} \right) \\
\Rightarrow C\left( {\dfrac{{72}}{{16}},\dfrac{{24}}{{16}}} \right) \\
\Rightarrow C\left( {\dfrac{9}{2},\dfrac{3}{2}} \right) \;
$
Therefore, the coordinate of the point of intersection is $ \left( {\dfrac{9}{2},\dfrac{3}{2}} \right) $ .
So, the correct answer is “$ \left( {\dfrac{9}{2},\dfrac{3}{2}} \right) $”.
Note: In this type of problems in which ratio is required. If on solving we get a ratio as positive then point will lie in between the given line segment and if ratio obtained is negative then point will lie outside the given line segment.
Formulas used: Section formula: $ x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},\,\,y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}} $
Complete step-by-step answer:
Points on the line segment are $ ( - 2, - 5)\,\,and\,\,\left( {6,3} \right) $ .
To find the required ratio.
We first let the ratio be $ k:1 $ . In which line segment $ x - 3y = 0 $ divides points $ ( - 2, - 5)\,\,and\,\,\left( {6,3} \right) $ .
Then by using section formula coordinate of point C will be given as:
$
x = \dfrac{{6(k) + 1( - 2)}}{{k + 1}},\,\,y = \dfrac{{3(k) + 1( - 5)}}{{k + 1}} \\
x = \dfrac{{6k - 2}}{{k + 1}},\,\,y = \dfrac{{3k - 5}}{{k + 1}} \\
$
Therefore, coordinate of the point $ C\left( {\dfrac{{6k - 2}}{{k + 1}},\dfrac{{3k - 5}}{{k + 1}}} \right) $
Also, point $ C\left( {\dfrac{{6k - 2}}{{k + 1}},\dfrac{{3k - 5}}{{k + 1}}} \right) $ line on the line $ x - 3y = 0 $ . Therefore, point $ C\left( {\dfrac{{6k - 2}}{{k + 1}},\dfrac{{3k - 5}}{{k + 1}}} \right) $ will satisfy given line.
Substituting values in given line:
\[
\dfrac{{6k - 2}}{{k + 1}} - 3\left( {\dfrac{{3k - 5}}{{k + 1}}} \right) = 0 \\
\Rightarrow \dfrac{{6k - 2 - 9k + 15}}{{k + 1}} = 0 \\
\Rightarrow \dfrac{{ - 3k + 13}}{{k + 1}} \;
\Rightarrow - 3k + 13 = 0 \\
\Rightarrow - 3k = - 13 \\
\Rightarrow k = \dfrac{{13}}{3} \;
\]
Therefore, line $ x - 3y = 0 $ divides line segment joining points $ ( - 2, - 5)\,\,and\,\,\left( {6,3} \right) $ is $ 13:3 $ .
To find the point of intersection or intercept we substitute the value of ratio obtained above in section formula. We have,
$ C\left( {\dfrac{{6k - 2}}{{k + 1}},\dfrac{{3k - 5}}{{k + 1}}} \right) $
$
\Rightarrow C\left( {\dfrac{{6\left( {\dfrac{{13}}{3}} \right) - 2}}{{\dfrac{{13}}{3} + 1}},\dfrac{{3\left( {\dfrac{{13}}{3}} \right) - 5}}{{\dfrac{{13}}{3} + 1}}} \right) \\
\Rightarrow C\left( {\dfrac{{\dfrac{{78}}{3} - 2}}{{\dfrac{{16}}{3}}},\dfrac{{\dfrac{{39}}{3} - 5}}{{\dfrac{{16}}{3}}}} \right) \\
\Rightarrow C\left( {\dfrac{{\dfrac{{78 - 6}}{3}}}{{\dfrac{{16}}{3}}},\dfrac{{\dfrac{{39 - 15}}{3}}}{{\dfrac{{16}}{3}}}} \right) \\
\Rightarrow C\left( {\dfrac{{\dfrac{{72}}{3}}}{{\dfrac{{16}}{3}}},\dfrac{{\dfrac{{24}}{3}}}{{\dfrac{{16}}{3}}}} \right) \\
\Rightarrow C\left( {\dfrac{{72}}{{16}},\dfrac{{24}}{{16}}} \right) \\
\Rightarrow C\left( {\dfrac{9}{2},\dfrac{3}{2}} \right) \;
$
Therefore, the coordinate of the point of intersection is $ \left( {\dfrac{9}{2},\dfrac{3}{2}} \right) $ .
So, the correct answer is “$ \left( {\dfrac{9}{2},\dfrac{3}{2}} \right) $”.
Note: In this type of problems in which ratio is required. If on solving we get a ratio as positive then point will lie in between the given line segment and if ratio obtained is negative then point will lie outside the given line segment.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE