
Find the ratio in which the join A(2,1,5) and B(3,4,3) is divided by the plane \[2x + 2y - 2z = 1\]. Also find the coordinates of the point of division.
Answer
614.7k+ views
Hint: First of all, consider the required ratio as a variable then find the coordinates of the point and substitute in the given plane. Thus, we will get the ratio and then substitute in the point which is in terms of the variable to get the coordinates of the point of division.
Complete step-by-step answer:
Given points are \[A\left( {2,1,5} \right){\text{ and }}B\left( {3,4,3} \right)\]
The plane is \[2x + 2y - 2z = 1\]
We know that if \[P\left( {{x_1},{y_1},{z_1}} \right){\text{ and }}Q\left( {{x_2},{y_2},{z_2}} \right)\] are two points, then the point \[R\] which divides the line joining \[P\] and \[Q\] internally in the ratio \[k:1\] is given by \[R = \left( {\dfrac{{k{x_2} + {x_1}}}{{k + 1}},\dfrac{{k{y_2} + {y_1}}}{{k + 1}},\dfrac{{k{z_2} + {z_1}}}{{k + 1}}} \right)\].
Let \[C\] be the point that divides the line joining \[A{\text{ and }}B\] in then ratio \[k:1\]. Then we have
\[
C = \left( {\dfrac{{k\left( 3 \right) + 2}}{{k + 1}},\dfrac{{k\left( 4 \right) + 1}}{{k + 1}},\dfrac{{k\left( 3 \right) + 5}}{{k + 1}}} \right) \\
C = \left( {\dfrac{{3k + 2}}{{k + 1}},\dfrac{{4k + 1}}{{k + 1}},\dfrac{{3k + 5}}{{k + 1}}} \right) \\
\]
But this point \[C\] lies on the given plane \[2x + 2y - 2z = 1\]. So, we have
\[
\Rightarrow 2\left( {\dfrac{{3k + 2}}{{k + 1}}} \right) + 2\left( {\dfrac{{4k + 1}}{{k + 1}}} \right) - 2\left( {\dfrac{{3k + 5}}{{k + 1}}} \right) = 1 \\
\Rightarrow \dfrac{2}{{k + 1}}\left( {3k + 2 + 4k + 1 - 3k - 5} \right) = 1 \\
\Rightarrow 2\left( {3k + 2 + 4k + 1 - 3k - 5} \right) = k + 1 \\
\Rightarrow 6k + 8k - 6k + 4 + 2 - 10 = k + 1 \\
\Rightarrow 8k - 4 = k + 1 \\
\Rightarrow 8k - k = 1 + 4 \\
\Rightarrow 7k = 5 \\
\therefore k = \dfrac{5}{7} \\
\]
So, the required ratio \[k:1 = \dfrac{5}{7}:1 = 5:7\]
By substituting the value of \[k\] in point \[C\], we get
\[
C = \left( {\dfrac{{3\left( {\dfrac{5}{7}} \right) + 2}}{{\left( {\dfrac{5}{7}} \right) + 1}},\dfrac{{4\left( {\dfrac{5}{7}} \right) + 1}}{{\left( {\dfrac{5}{7}} \right) + 1}},\dfrac{{3\left( {\dfrac{5}{7}} \right) + 5}}{{\left( {\dfrac{5}{7}} \right) + 1}}} \right) \\
C = \left( {\dfrac{{15 + 14}}{{5 + 7}},\dfrac{{20 + 7}}{{5 + 7}},\dfrac{{15 + 35}}{{5 + 7}}} \right) \\
\therefore C = \left( {\dfrac{{29}}{{12}},\dfrac{{27}}{{12}},\dfrac{{50}}{{12}}} \right) \\
\]
Thus, the ratio in which join the \[A\left( {2,1,5} \right){\text{ and }}B\left( {3,4,3} \right)\] is divided by the plane \[2x + 2y - 2z = 1\] is \[5:7\]and the coordinates of the point of division is \[\left( {\dfrac{{29}}{{12}},\dfrac{{27}}{{12}},\dfrac{{50}}{{12}}} \right)\].
Note: If \[P\left( {{x_1},{y_1},{z_1}} \right){\text{ and }}Q\left( {{x_2},{y_2},{z_2}} \right)\] are two points, then the point \[R\] which divides the line joining \[P\] and \[Q\] internally in the ratio \[k:1\] is given by \[R = \left( {\dfrac{{k{x_2} + {x_1}}}{{k + 1}},\dfrac{{k{y_2} + {y_1}}}{{k + 1}},\dfrac{{k{z_2} + {z_1}}}{{k + 1}}} \right)\].
Complete step-by-step answer:
Given points are \[A\left( {2,1,5} \right){\text{ and }}B\left( {3,4,3} \right)\]
The plane is \[2x + 2y - 2z = 1\]
We know that if \[P\left( {{x_1},{y_1},{z_1}} \right){\text{ and }}Q\left( {{x_2},{y_2},{z_2}} \right)\] are two points, then the point \[R\] which divides the line joining \[P\] and \[Q\] internally in the ratio \[k:1\] is given by \[R = \left( {\dfrac{{k{x_2} + {x_1}}}{{k + 1}},\dfrac{{k{y_2} + {y_1}}}{{k + 1}},\dfrac{{k{z_2} + {z_1}}}{{k + 1}}} \right)\].
Let \[C\] be the point that divides the line joining \[A{\text{ and }}B\] in then ratio \[k:1\]. Then we have
\[
C = \left( {\dfrac{{k\left( 3 \right) + 2}}{{k + 1}},\dfrac{{k\left( 4 \right) + 1}}{{k + 1}},\dfrac{{k\left( 3 \right) + 5}}{{k + 1}}} \right) \\
C = \left( {\dfrac{{3k + 2}}{{k + 1}},\dfrac{{4k + 1}}{{k + 1}},\dfrac{{3k + 5}}{{k + 1}}} \right) \\
\]
But this point \[C\] lies on the given plane \[2x + 2y - 2z = 1\]. So, we have
\[
\Rightarrow 2\left( {\dfrac{{3k + 2}}{{k + 1}}} \right) + 2\left( {\dfrac{{4k + 1}}{{k + 1}}} \right) - 2\left( {\dfrac{{3k + 5}}{{k + 1}}} \right) = 1 \\
\Rightarrow \dfrac{2}{{k + 1}}\left( {3k + 2 + 4k + 1 - 3k - 5} \right) = 1 \\
\Rightarrow 2\left( {3k + 2 + 4k + 1 - 3k - 5} \right) = k + 1 \\
\Rightarrow 6k + 8k - 6k + 4 + 2 - 10 = k + 1 \\
\Rightarrow 8k - 4 = k + 1 \\
\Rightarrow 8k - k = 1 + 4 \\
\Rightarrow 7k = 5 \\
\therefore k = \dfrac{5}{7} \\
\]
So, the required ratio \[k:1 = \dfrac{5}{7}:1 = 5:7\]
By substituting the value of \[k\] in point \[C\], we get
\[
C = \left( {\dfrac{{3\left( {\dfrac{5}{7}} \right) + 2}}{{\left( {\dfrac{5}{7}} \right) + 1}},\dfrac{{4\left( {\dfrac{5}{7}} \right) + 1}}{{\left( {\dfrac{5}{7}} \right) + 1}},\dfrac{{3\left( {\dfrac{5}{7}} \right) + 5}}{{\left( {\dfrac{5}{7}} \right) + 1}}} \right) \\
C = \left( {\dfrac{{15 + 14}}{{5 + 7}},\dfrac{{20 + 7}}{{5 + 7}},\dfrac{{15 + 35}}{{5 + 7}}} \right) \\
\therefore C = \left( {\dfrac{{29}}{{12}},\dfrac{{27}}{{12}},\dfrac{{50}}{{12}}} \right) \\
\]
Thus, the ratio in which join the \[A\left( {2,1,5} \right){\text{ and }}B\left( {3,4,3} \right)\] is divided by the plane \[2x + 2y - 2z = 1\] is \[5:7\]and the coordinates of the point of division is \[\left( {\dfrac{{29}}{{12}},\dfrac{{27}}{{12}},\dfrac{{50}}{{12}}} \right)\].
Note: If \[P\left( {{x_1},{y_1},{z_1}} \right){\text{ and }}Q\left( {{x_2},{y_2},{z_2}} \right)\] are two points, then the point \[R\] which divides the line joining \[P\] and \[Q\] internally in the ratio \[k:1\] is given by \[R = \left( {\dfrac{{k{x_2} + {x_1}}}{{k + 1}},\dfrac{{k{y_2} + {y_1}}}{{k + 1}},\dfrac{{k{z_2} + {z_1}}}{{k + 1}}} \right)\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

