
Find the radical centre of the three circles ${{x}^{2}}+{{y}^{2}}={{a}^{2}},{{\left( x-c \right)}^{2}}+{{y}^{2}}={{a}^{2}}\ $and ${{x}^{2}}+{{\left( y-b \right)}^{2}}={{a}^{2}}$.
Answer
594.9k+ views
- Hint: We will be using the concept of circles and coordinate geometry to solve problems. Also, we will be using the concept of radical axes and radical centre.
Complete step-by-step solution -
We have to find the radical centre of three circles given to us.
Let,
$\begin{align}
& {{S}_{1}}={{x}^{2}}+{{y}^{2}}={{a}^{2}} \\
& {{S}_{2}}={{\left( x-c \right)}^{2}}+{{y}^{2}}={{a}^{2}}\ \\
& {{S}_{3}}={{x}^{2}}+{{\left( y-b \right)}^{2}}={{a}^{2}} \\
\end{align}$
We know that the radical centre is the point of intersection of radical axes of the pair of circles. We also know that if ${{S}_{1}},{{S}_{2}},{{S}_{3}}$ are the pair of circles then their radical axes are given by ${{S}_{1}}-{{S}_{2}}=0,{{S}_{2}}-{{S}_{3}}=0,{{S}_{3}}-{{S}_{1}}=0$
So,
$\begin{align}
& {{S}_{1}}-{{S}_{2}}={{x}^{2}}+{{y}^{2}}-{{a}^{2}}-{{\left( x-c \right)}^{2}}-{{y}^{2}}+{{a}^{2}}=0 \\
& ={{x}^{2}}-{{\left( x-c \right)}^{2}}=0 \\
& \text{Using }\ {{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) \\
& \left( x-x+c \right)\left( 2x-c \right)=0 \\
& c\left( 2x-c \right)=0 \\
& x=\dfrac{c}{2}............\left( 1 \right) \\
\end{align}$
Now,
$\begin{align}
& {{S}_{2}}-{{S}_{3}}={{\left( x-c \right)}^{2}}+{{y}^{2}}-{{a}^{2}}-{{x}^{2}}-{{\left( y-b \right)}^{2}}+{{a}^{2}} \\
& ={{\left( x-c \right)}^{2}}-{{x}^{2}}+{{y}^{2}}-{{\left( y-b \right)}^{2}} \\
& =\left( 2x-c \right)\left( -c \right)+b\left( 2y-b \right) \\
& \left( 2x-c \right)\left( -c \right)+b\left( 2y-b \right)=0 \\
\end{align}$
Using equation (1), we get,
$\begin{align}
& \left( 2\left( \dfrac{c}{2} \right)-c \right)\left( -c \right)+b\left( 2y-b \right)=0 \\
& 0\left( -c \right)+b\left( 2y-b \right)=0 \\
& 2y-b=0 \\
& y=\dfrac{b}{2}........\left( 2 \right) \\
\end{align}$
Thus, from equation (1) and (2) we get radical centre $\left( \dfrac{c}{2},\dfrac{b}{2} \right)$.
Note: To solve these types of questions it is important to remember the concept of radical centre and radical axes. It should be noted that the radical centre is the point of intersection of the three radical axes also to find the radical axes of two circle we subtract the one equation from the other for example if
$\begin{align}
& {{S}_{1}}={{x}^{2}}+{{y}^{2}}={{a}^{2}} \\
& {{S}_{2}}={{\left( x-c \right)}^{2}}+{{y}^{2}}={{a}^{2}}\ \\
& {{S}_{3}}={{x}^{2}}+{{\left( y-b \right)}^{2}}={{a}^{2}} \\
\end{align}$
then the equations of radical axes are ${{S}_{1}}-{{S}_{2}}=0,{{S}_{2}}-{{S}_{3}}=0,{{S}_{3}}-{{S}_{1}}=0$ .
Complete step-by-step solution -
We have to find the radical centre of three circles given to us.
Let,
$\begin{align}
& {{S}_{1}}={{x}^{2}}+{{y}^{2}}={{a}^{2}} \\
& {{S}_{2}}={{\left( x-c \right)}^{2}}+{{y}^{2}}={{a}^{2}}\ \\
& {{S}_{3}}={{x}^{2}}+{{\left( y-b \right)}^{2}}={{a}^{2}} \\
\end{align}$
We know that the radical centre is the point of intersection of radical axes of the pair of circles. We also know that if ${{S}_{1}},{{S}_{2}},{{S}_{3}}$ are the pair of circles then their radical axes are given by ${{S}_{1}}-{{S}_{2}}=0,{{S}_{2}}-{{S}_{3}}=0,{{S}_{3}}-{{S}_{1}}=0$
So,
$\begin{align}
& {{S}_{1}}-{{S}_{2}}={{x}^{2}}+{{y}^{2}}-{{a}^{2}}-{{\left( x-c \right)}^{2}}-{{y}^{2}}+{{a}^{2}}=0 \\
& ={{x}^{2}}-{{\left( x-c \right)}^{2}}=0 \\
& \text{Using }\ {{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) \\
& \left( x-x+c \right)\left( 2x-c \right)=0 \\
& c\left( 2x-c \right)=0 \\
& x=\dfrac{c}{2}............\left( 1 \right) \\
\end{align}$
Now,
$\begin{align}
& {{S}_{2}}-{{S}_{3}}={{\left( x-c \right)}^{2}}+{{y}^{2}}-{{a}^{2}}-{{x}^{2}}-{{\left( y-b \right)}^{2}}+{{a}^{2}} \\
& ={{\left( x-c \right)}^{2}}-{{x}^{2}}+{{y}^{2}}-{{\left( y-b \right)}^{2}} \\
& =\left( 2x-c \right)\left( -c \right)+b\left( 2y-b \right) \\
& \left( 2x-c \right)\left( -c \right)+b\left( 2y-b \right)=0 \\
\end{align}$
Using equation (1), we get,
$\begin{align}
& \left( 2\left( \dfrac{c}{2} \right)-c \right)\left( -c \right)+b\left( 2y-b \right)=0 \\
& 0\left( -c \right)+b\left( 2y-b \right)=0 \\
& 2y-b=0 \\
& y=\dfrac{b}{2}........\left( 2 \right) \\
\end{align}$
Thus, from equation (1) and (2) we get radical centre $\left( \dfrac{c}{2},\dfrac{b}{2} \right)$.
Note: To solve these types of questions it is important to remember the concept of radical centre and radical axes. It should be noted that the radical centre is the point of intersection of the three radical axes also to find the radical axes of two circle we subtract the one equation from the other for example if
$\begin{align}
& {{S}_{1}}={{x}^{2}}+{{y}^{2}}={{a}^{2}} \\
& {{S}_{2}}={{\left( x-c \right)}^{2}}+{{y}^{2}}={{a}^{2}}\ \\
& {{S}_{3}}={{x}^{2}}+{{\left( y-b \right)}^{2}}={{a}^{2}} \\
\end{align}$
then the equations of radical axes are ${{S}_{1}}-{{S}_{2}}=0,{{S}_{2}}-{{S}_{3}}=0,{{S}_{3}}-{{S}_{1}}=0$ .
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

