
Find the radian measure corresponding to the following degree measures $\left( \text{use }\pi =\dfrac{22}{7} \right)$.
(i) ${{300}^{\circ }}$
(ii) ${{35}^{\circ }}$
Answer
607.5k+ views
Hint: As we know that the relation between radians and degree is always represented by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$. Therefore by dividing the expression by $180$ to both the denominators the we get the other relation between radians and degree and that is ${{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( \dfrac{180}{180} \right)}^{\circ }}$ which after simplifying results into ${{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}$.
Complete step-by-step answer:
(i) Now, we will consider the degree ${{300}^{\circ }}$ and we will convert it into radian. We will do this with the help of the formula which is given by ${{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}$. Therefore, we have ${{300}^{\circ }}=300\times {{\left( 1 \right)}^{\circ }}$. By substituting the value of ${{\left( 1 \right)}^{\circ }}$ we will have,
$\begin{align}
& {{300}^{\circ }}=300\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{300}^{\circ }}=300\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
\end{align}$
This can be written as ${{300}^{\circ }}={{\left( 300\times \dfrac{\pi }{180} \right)}^{c}}$. Therefore we get,
$\begin{align}
& {{300}^{\circ }}={{\left( 300\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( 5\times \dfrac{\pi }{3} \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5\pi }{3} \right)}^{c}} \\
\end{align}$
Now we will substitute $\pi =\dfrac{22}{7}$ in this equation. Thus, we get
$\begin{align}
& {{300}^{\circ }}={{\left( \dfrac{5\pi }{3} \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5}{3}\times \pi \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5}{3}\times \dfrac{22}{7} \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( \dfrac{110}{21} \right)}^{c}} \\
\end{align}$
Hence, we get ${{300}^{\circ }}={{\left( \dfrac{110}{21} \right)}^{c}}$ or ${{300}^{\circ }}={{\left( 5.238 \right)}^{c}}$ in decimals.
(ii) Similarly we will now consider the degree ${{35}^{\circ }}$ and we will convert it into radian. We will do this with the help of the formula which is given by ${{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}$. Therefore, we have ${{35}^{\circ }}=35\times {{\left( 1 \right)}^{\circ }}$. By substituting the value of ${{\left( 1 \right)}^{\circ }}$ we will have,
$\begin{align}
& {{35}^{\circ }}=35\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{35}^{\circ }}=35\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
\end{align}$
This can be written as ${{35}^{\circ }}={{\left( 35\times \dfrac{\pi }{180} \right)}^{c}}$. Therefore we get,
$\begin{align}
& {{35}^{\circ }}={{\left( 35\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( 7\times \dfrac{\pi }{36} \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( \dfrac{7\pi }{36} \right)}^{c}} \\
\end{align}$
Now we will substitute $\pi =\dfrac{22}{7}$ in this equation. Thus, we get
$\begin{align}
& {{35}^{\circ }}={{\left( \dfrac{7\pi }{36} \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( \dfrac{7}{36}\times \pi \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( \dfrac{7}{36}\times \dfrac{22}{7} \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( \dfrac{1}{28}\times \dfrac{11}{1} \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}} \\
\end{align}$
Hence, we get ${{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}}$ or ${{35}^{\circ }}={{0.3928}^{c}}$ in decimals.
Hence, the degree ${{300}^{\circ }}={{\left( \dfrac{110}{21} \right)}^{c}}$ is in radians and the degree ${{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}}$ is in radians.
Note: Alternatively we can solve it directly substituting $\left( \pi \right)$ as $3.14$. By this we will get the solution in the way as done below.
$\begin{align}
& {{300}^{\circ }}={{\left( \dfrac{5\pi }{3} \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5}{3}\times 3.14 \right)}^{c}} \\
\end{align}$
For solving it further we will use BODMASS rule in which we will divide first and then multiply the terms together. Thus we get
$\begin{align}
& \Rightarrow {{300}^{\circ }}={{\left( 1.66\times 3.14 \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( 5.2124 \right)}^{c}} \\
\end{align}$
Alternatively we can put the direct value of ${{\left( 1 \right)}^{\circ }}={{\left( 0.0174 \right)}^{c}}$ in the expression $\begin{align}
& {{300}^{\circ }}=\left( 300 \right)\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{300}^{\circ }}=\left( 300 \right)\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{300}^{\circ }}=300\times {{\left( 0.0174 \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( 5.22 \right)}^{c}} \\
\end{align}$
Similarly we can apply this procedure to ${{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}}$.
Complete step-by-step answer:
(i) Now, we will consider the degree ${{300}^{\circ }}$ and we will convert it into radian. We will do this with the help of the formula which is given by ${{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}$. Therefore, we have ${{300}^{\circ }}=300\times {{\left( 1 \right)}^{\circ }}$. By substituting the value of ${{\left( 1 \right)}^{\circ }}$ we will have,
$\begin{align}
& {{300}^{\circ }}=300\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{300}^{\circ }}=300\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
\end{align}$
This can be written as ${{300}^{\circ }}={{\left( 300\times \dfrac{\pi }{180} \right)}^{c}}$. Therefore we get,
$\begin{align}
& {{300}^{\circ }}={{\left( 300\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( 5\times \dfrac{\pi }{3} \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5\pi }{3} \right)}^{c}} \\
\end{align}$
Now we will substitute $\pi =\dfrac{22}{7}$ in this equation. Thus, we get
$\begin{align}
& {{300}^{\circ }}={{\left( \dfrac{5\pi }{3} \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5}{3}\times \pi \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5}{3}\times \dfrac{22}{7} \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( \dfrac{110}{21} \right)}^{c}} \\
\end{align}$
Hence, we get ${{300}^{\circ }}={{\left( \dfrac{110}{21} \right)}^{c}}$ or ${{300}^{\circ }}={{\left( 5.238 \right)}^{c}}$ in decimals.
(ii) Similarly we will now consider the degree ${{35}^{\circ }}$ and we will convert it into radian. We will do this with the help of the formula which is given by ${{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}$. Therefore, we have ${{35}^{\circ }}=35\times {{\left( 1 \right)}^{\circ }}$. By substituting the value of ${{\left( 1 \right)}^{\circ }}$ we will have,
$\begin{align}
& {{35}^{\circ }}=35\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{35}^{\circ }}=35\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
\end{align}$
This can be written as ${{35}^{\circ }}={{\left( 35\times \dfrac{\pi }{180} \right)}^{c}}$. Therefore we get,
$\begin{align}
& {{35}^{\circ }}={{\left( 35\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( 7\times \dfrac{\pi }{36} \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( \dfrac{7\pi }{36} \right)}^{c}} \\
\end{align}$
Now we will substitute $\pi =\dfrac{22}{7}$ in this equation. Thus, we get
$\begin{align}
& {{35}^{\circ }}={{\left( \dfrac{7\pi }{36} \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( \dfrac{7}{36}\times \pi \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( \dfrac{7}{36}\times \dfrac{22}{7} \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( \dfrac{1}{28}\times \dfrac{11}{1} \right)}^{c}} \\
& \Rightarrow {{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}} \\
\end{align}$
Hence, we get ${{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}}$ or ${{35}^{\circ }}={{0.3928}^{c}}$ in decimals.
Hence, the degree ${{300}^{\circ }}={{\left( \dfrac{110}{21} \right)}^{c}}$ is in radians and the degree ${{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}}$ is in radians.
Note: Alternatively we can solve it directly substituting $\left( \pi \right)$ as $3.14$. By this we will get the solution in the way as done below.
$\begin{align}
& {{300}^{\circ }}={{\left( \dfrac{5\pi }{3} \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5}{3}\times 3.14 \right)}^{c}} \\
\end{align}$
For solving it further we will use BODMASS rule in which we will divide first and then multiply the terms together. Thus we get
$\begin{align}
& \Rightarrow {{300}^{\circ }}={{\left( 1.66\times 3.14 \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( 5.2124 \right)}^{c}} \\
\end{align}$
Alternatively we can put the direct value of ${{\left( 1 \right)}^{\circ }}={{\left( 0.0174 \right)}^{c}}$ in the expression $\begin{align}
& {{300}^{\circ }}=\left( 300 \right)\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{300}^{\circ }}=\left( 300 \right)\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{300}^{\circ }}=300\times {{\left( 0.0174 \right)}^{c}} \\
& \Rightarrow {{300}^{\circ }}={{\left( 5.22 \right)}^{c}} \\
\end{align}$
Similarly we can apply this procedure to ${{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

