
Find the radian measure corresponding to the following degree measures $\left( \text{use }\pi =\dfrac{22}{7} \right)$.
(i) ${{125}^{\circ }}30'$
Answer
607.2k+ views
Hint: The relation between degrees and radians work better here as we need a conversion for degree to radians. The formula is given numerically by,
$\begin{align}
& {{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( \dfrac{180}{180} \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }} \\
\end{align}$
Complete step-by-step answer:
(i) We will now consider the degrees ${{125}^{\circ }}30'$ and we will convert it into its simple radians. We know that 1 degree = 60 minutes. This can be numerically written as ${{\left( 1 \right)}^{\circ }}=60'$. Therefore we can write it as ${{\left( \dfrac{1}{60} \right)}^{\circ }}=1'$. Thus we have,
$\begin{align}
& {{125}^{\circ }}30'={{125}^{\circ }}+30' \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+\left( 30\times 1' \right) \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+\left( 30\times {{\left( \dfrac{1}{60} \right)}^{\circ }} \right) \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+{{\left( 30\times \dfrac{1}{60} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+{{\left( \dfrac{1}{2} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{\left( 125+\dfrac{1}{2} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{\left( \dfrac{251}{2} \right)}^{\circ }} \\
\end{align}$
We will solve this with the help of the formula is given by ${{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}$. Therefore, we have ${{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }}$. By substituting the value of ${{\left( 1 \right)}^{\circ }}$ we will have,
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
\end{align}$
This can be written as ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times \dfrac{\pi }{180} \right)}^{c}}$. Therefore we get,
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
\end{align}$
Now we will substitute $\pi =\dfrac{22}{7}$ in this equation. Thus, we get
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{360}\times \dfrac{22}{7} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{180}\times \dfrac{11}{7} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{2761}{1260} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.191 \right)}^{c}} \\
\end{align}$
Hence, we get ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{2761}{1260} \right)}^{c}}$ or ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.191 \right)}^{c}}$ in decimals.
Hence, the degree ${{125}^{\circ }}30'$ is equal to ${{\left( 2.191 \right)}^{c}}$ in radians.
Note: Alternatively we can put the direct value of ${{\left( 1 \right)}^{\circ }}={{\left( 0.0174 \right)}^{c}}$ in the expression $\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times 0.0174 \right)}^{c}} \\
\end{align}$
At this step we will use BODMAS rule and first solve division operation and after that we will solve multiplication operation. Therefore, we get
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 125.5\times 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.1837 \right)}^{c}} \\
\end{align}$
$\begin{align}
& {{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( \dfrac{180}{180} \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }} \\
\end{align}$
Complete step-by-step answer:
(i) We will now consider the degrees ${{125}^{\circ }}30'$ and we will convert it into its simple radians. We know that 1 degree = 60 minutes. This can be numerically written as ${{\left( 1 \right)}^{\circ }}=60'$. Therefore we can write it as ${{\left( \dfrac{1}{60} \right)}^{\circ }}=1'$. Thus we have,
$\begin{align}
& {{125}^{\circ }}30'={{125}^{\circ }}+30' \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+\left( 30\times 1' \right) \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+\left( 30\times {{\left( \dfrac{1}{60} \right)}^{\circ }} \right) \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+{{\left( 30\times \dfrac{1}{60} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+{{\left( \dfrac{1}{2} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{\left( 125+\dfrac{1}{2} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{\left( \dfrac{251}{2} \right)}^{\circ }} \\
\end{align}$
We will solve this with the help of the formula is given by ${{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}$. Therefore, we have ${{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }}$. By substituting the value of ${{\left( 1 \right)}^{\circ }}$ we will have,
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
\end{align}$
This can be written as ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times \dfrac{\pi }{180} \right)}^{c}}$. Therefore we get,
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
\end{align}$
Now we will substitute $\pi =\dfrac{22}{7}$ in this equation. Thus, we get
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{360}\times \dfrac{22}{7} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{180}\times \dfrac{11}{7} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{2761}{1260} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.191 \right)}^{c}} \\
\end{align}$
Hence, we get ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{2761}{1260} \right)}^{c}}$ or ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.191 \right)}^{c}}$ in decimals.
Hence, the degree ${{125}^{\circ }}30'$ is equal to ${{\left( 2.191 \right)}^{c}}$ in radians.
Note: Alternatively we can put the direct value of ${{\left( 1 \right)}^{\circ }}={{\left( 0.0174 \right)}^{c}}$ in the expression $\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times 0.0174 \right)}^{c}} \\
\end{align}$
At this step we will use BODMAS rule and first solve division operation and after that we will solve multiplication operation. Therefore, we get
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 125.5\times 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.1837 \right)}^{c}} \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

