
Find the probability of drawing an Ace or a Spade from a well shuffled pack of 52 playing cards.
Answer
559.2k+ views
Hint: We can draw an Ace or a Spade from a well shuffled pack of 52 playing cards, the number of ace cards present are 4 and spade cards are 13. These ace cards belong to each of the four suites including spade and thus we will subtract its probability (of intersection of the two). By applying the formula of probability and using the identity of union, we can calculate the value of required probability.
Formula to be used:
$ P = \dfrac{f}{T} $ where, P is the probability, f , favorable outcomes and T, the total outcomes.
Identity to be used:
$ P\left( {A \cup S} \right) = P(A) + P(S) - P\left( {A \cap S} \right) $
Where, $ \cap , \cup $ sign denotes intersection and union respectively, A and S denotes different events.
Complete step-by-step answer:
In a well shuffled deck of 52 playing cards, the number of spades and aces are:
Spade cards = 13
Ace cards = 4
The respective probabilities are given as:
Spade:
$ P = \dfrac{f}{T} $ , here,
Favorable outcomes (f) = 13
Total outcomes (T) = 52
$ \Rightarrow P\left( S \right) = \dfrac{{13}}{{52}} $
Ace:
$ P = \dfrac{f}{T} $ , here,
Favorable outcomes (f) = 4
Total outcomes (T) = 52
$ \Rightarrow P\left( S \right) = \dfrac{4}{{52}} $
Then, $ P\left( {A \cap S} \right) $ can be given as:
We have only 1 ace card belonging to spade suite, so the favorable outcome is 1
$ \Rightarrow P\left( {A \cap S} \right) = \dfrac{1}{{52}} $
Venn diagram for the probability drawing either spade or ace is:
In the union of probability of both the cards, we don’t require the area of their intersection denoting selection of ace that belongs to spade suite. So to find the required probability, we can use the formula:
$ P\left( {A \cup S} \right) = P(A) + P(S) - P\left( {A \cap S} \right) $
Substituting the values, we get:
\[
P\left( {A \cup S} \right) = \dfrac{4}{{52}} + \dfrac{{13}}{{52}} - \dfrac{1}{{52}} \\
P\left( {A \cup S} \right) = \dfrac{{16}}{{52}} \\
P\left( {A \cup S} \right) = \dfrac{4}{{13}} \;
\]
Therefore, the probability of drawing an Ace or a Spade from a well shuffled pack of 52 playing cards is $ \dfrac{4}{{13}} $
So, the correct answer is “ $ \dfrac{4}{{13}} $ ”.
Note: The question can also be solved by the following method:
We know that ace cards are 4 in number belonging to each suit and spade cards are 13 in number including 1 ace of spade.
So total number of ace and spade cards are:
\[4 + {\text{1}}3 = 17\]
But, we can either draw a spade card or an ace card, so for the favorable outcomes, we need to subtract this 1 from their addition
\[17-1 = 16\]
Applying the formula, we get:
$
P = \dfrac{{16}}{{52}} \\
P = \dfrac{4}{{13}} \;
$
Formula to be used:
$ P = \dfrac{f}{T} $ where, P is the probability, f , favorable outcomes and T, the total outcomes.
Identity to be used:
$ P\left( {A \cup S} \right) = P(A) + P(S) - P\left( {A \cap S} \right) $
Where, $ \cap , \cup $ sign denotes intersection and union respectively, A and S denotes different events.
Complete step-by-step answer:
In a well shuffled deck of 52 playing cards, the number of spades and aces are:
Spade cards = 13
Ace cards = 4
The respective probabilities are given as:
Spade:
$ P = \dfrac{f}{T} $ , here,
Favorable outcomes (f) = 13
Total outcomes (T) = 52
$ \Rightarrow P\left( S \right) = \dfrac{{13}}{{52}} $
Ace:
$ P = \dfrac{f}{T} $ , here,
Favorable outcomes (f) = 4
Total outcomes (T) = 52
$ \Rightarrow P\left( S \right) = \dfrac{4}{{52}} $
Then, $ P\left( {A \cap S} \right) $ can be given as:
We have only 1 ace card belonging to spade suite, so the favorable outcome is 1
$ \Rightarrow P\left( {A \cap S} \right) = \dfrac{1}{{52}} $
Venn diagram for the probability drawing either spade or ace is:
In the union of probability of both the cards, we don’t require the area of their intersection denoting selection of ace that belongs to spade suite. So to find the required probability, we can use the formula:
$ P\left( {A \cup S} \right) = P(A) + P(S) - P\left( {A \cap S} \right) $
Substituting the values, we get:
\[
P\left( {A \cup S} \right) = \dfrac{4}{{52}} + \dfrac{{13}}{{52}} - \dfrac{1}{{52}} \\
P\left( {A \cup S} \right) = \dfrac{{16}}{{52}} \\
P\left( {A \cup S} \right) = \dfrac{4}{{13}} \;
\]
Therefore, the probability of drawing an Ace or a Spade from a well shuffled pack of 52 playing cards is $ \dfrac{4}{{13}} $
So, the correct answer is “ $ \dfrac{4}{{13}} $ ”.
Note: The question can also be solved by the following method:
We know that ace cards are 4 in number belonging to each suit and spade cards are 13 in number including 1 ace of spade.
So total number of ace and spade cards are:
\[4 + {\text{1}}3 = 17\]
But, we can either draw a spade card or an ace card, so for the favorable outcomes, we need to subtract this 1 from their addition
\[17-1 = 16\]
Applying the formula, we get:
$
P = \dfrac{{16}}{{52}} \\
P = \dfrac{4}{{13}} \;
$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

