
Find the position vector of the a point lying on the line joining the points whose position vectors are $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$. \[\]
Answer
557.4k+ views
Hint: We recall the definition of position vectors. We use the fact that the position vector of any point P that lies on the line joining two points A,B whose positions vector are known as $\overrightarrow{a},\overrightarrow{b}$ is given by $\overrightarrow{a}+\lambda \overrightarrow{d}$ where $\lambda $ is any real scalar and $\overrightarrow{d}=\overrightarrow{b}-\overrightarrow{a}$ is the distance vector.\[\]
Complete step by step answer:
We can represent any point in the space $P\left( x,y,z \right)$ as vector with original O as the initial point and P as the final point in terms of orthogonal unit vectors $\hat{i}$,$\hat{j}$ and $\hat{k}$ as $\overrightarrow{OP}=\overrightarrow{p}=x\hat{i}+y\hat{j}+\hat{k}$. This vector is called position vector, location vector or radius vector. We have the rough figure of the position vector $\overrightarrow{p}$ below. \[\]
If there are $\overrightarrow{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right),\overrightarrow{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right)$ be two position vectors of two points then the position vector of any point on the line joining the two points is given with a real scalar $\lambda $as;
\[\begin{align}
& \overrightarrow{p}=\overrightarrow{a}+\lambda \overrightarrow{d} \\
& \Rightarrow \overrightarrow{p}=\overrightarrow{a}+\lambda \left( \overrightarrow{b}-\overrightarrow{a} \right) \\
& \Rightarrow \overrightarrow{p}=\left( {{a}_{1}}+\lambda \left( {{b}_{1}}-{{a}_{1}} \right) \right)\hat{i}+\left( {{a}_{2}}+\lambda {{b}_{2}}-{{a}_{2}} \right)\hat{j}+\left( {{a}_{3}}+\lambda \left( {{b}_{3}}-{{a}_{3}} \right) \right)\hat{k} \\
\end{align}\]
We are given in the question the position vectors of two points as $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$. Let us denote the two points as A and B and the position vectors as $\overrightarrow{a}=\hat{i}+\hat{j}-\hat{k}$ and $\overrightarrow{b}=\hat{i}-\hat{j}+\hat{k}$.So we have
\[\begin{align}
& \overrightarrow{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)=\hat{i}+\hat{j}-\hat{k} \\
& \overrightarrow{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right)=\hat{i}-\hat{j}+\hat{k} \\
\end{align}\]
We compare the respective components and we get;
\[\begin{align}
& \Rightarrow {{a}_{1}}=1,{{a}_{2}}=1,{{a}_{3}}=-1 \\
& \Rightarrow {{b}_{1}}=1,{{b}_{2}}=-1,{{b}_{3}}=1 \\
\end{align}\]
Let P be any point on the line segment joining A and B.The position vector of P is;
\[\begin{align}
& \overrightarrow{p}=\overrightarrow{a}+\lambda \overrightarrow{b}=\left( {{a}_{1}}+\lambda \left( {{b}_{1}}-{{a}_{1}} \right) \right)\hat{i}+\left( {{a}_{2}}+\lambda \left( {{b}_{2}}-{{a}_{2}} \right) \right)\hat{j}+\left( {{a}_{3}}+\lambda \left( {{b}_{3}}-{{a}_{3}} \right) \right)\hat{k} \\
& \Rightarrow \overrightarrow{p}=\left( 1+\lambda \cdot 0 \right)\hat{i}+\left( 1+\lambda \left( -2 \right) \right)\hat{j}+\left( -1+\lambda \cdot 2 \right)\hat{k} \\
& \Rightarrow \overrightarrow{p}=\hat{i}+\left( 1-2\lambda \right)\hat{j}+\left( -1+2\lambda \right)\hat{k} \\
\end{align}\]
Note: We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are orthogonal unit vectors (vectors with magnitude 1) along $x,y$ and $z$ axes respectively. If we want to find the position vector of midpoint , it is is given by $\dfrac{\overrightarrow{a}+\overrightarrow{b}}{2}$ and the position vector of any point that divides the line segment AB at a ratio $m:n$ is given by $\dfrac{m\overrightarrow{a}+n\overrightarrow{b}}{m+n}$. We note that the position vector of the point system reference is unique.
Complete step by step answer:
We can represent any point in the space $P\left( x,y,z \right)$ as vector with original O as the initial point and P as the final point in terms of orthogonal unit vectors $\hat{i}$,$\hat{j}$ and $\hat{k}$ as $\overrightarrow{OP}=\overrightarrow{p}=x\hat{i}+y\hat{j}+\hat{k}$. This vector is called position vector, location vector or radius vector. We have the rough figure of the position vector $\overrightarrow{p}$ below. \[\]
If there are $\overrightarrow{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right),\overrightarrow{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right)$ be two position vectors of two points then the position vector of any point on the line joining the two points is given with a real scalar $\lambda $as;
\[\begin{align}
& \overrightarrow{p}=\overrightarrow{a}+\lambda \overrightarrow{d} \\
& \Rightarrow \overrightarrow{p}=\overrightarrow{a}+\lambda \left( \overrightarrow{b}-\overrightarrow{a} \right) \\
& \Rightarrow \overrightarrow{p}=\left( {{a}_{1}}+\lambda \left( {{b}_{1}}-{{a}_{1}} \right) \right)\hat{i}+\left( {{a}_{2}}+\lambda {{b}_{2}}-{{a}_{2}} \right)\hat{j}+\left( {{a}_{3}}+\lambda \left( {{b}_{3}}-{{a}_{3}} \right) \right)\hat{k} \\
\end{align}\]
We are given in the question the position vectors of two points as $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$. Let us denote the two points as A and B and the position vectors as $\overrightarrow{a}=\hat{i}+\hat{j}-\hat{k}$ and $\overrightarrow{b}=\hat{i}-\hat{j}+\hat{k}$.So we have
\[\begin{align}
& \overrightarrow{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)=\hat{i}+\hat{j}-\hat{k} \\
& \overrightarrow{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right)=\hat{i}-\hat{j}+\hat{k} \\
\end{align}\]
We compare the respective components and we get;
\[\begin{align}
& \Rightarrow {{a}_{1}}=1,{{a}_{2}}=1,{{a}_{3}}=-1 \\
& \Rightarrow {{b}_{1}}=1,{{b}_{2}}=-1,{{b}_{3}}=1 \\
\end{align}\]
Let P be any point on the line segment joining A and B.The position vector of P is;
\[\begin{align}
& \overrightarrow{p}=\overrightarrow{a}+\lambda \overrightarrow{b}=\left( {{a}_{1}}+\lambda \left( {{b}_{1}}-{{a}_{1}} \right) \right)\hat{i}+\left( {{a}_{2}}+\lambda \left( {{b}_{2}}-{{a}_{2}} \right) \right)\hat{j}+\left( {{a}_{3}}+\lambda \left( {{b}_{3}}-{{a}_{3}} \right) \right)\hat{k} \\
& \Rightarrow \overrightarrow{p}=\left( 1+\lambda \cdot 0 \right)\hat{i}+\left( 1+\lambda \left( -2 \right) \right)\hat{j}+\left( -1+\lambda \cdot 2 \right)\hat{k} \\
& \Rightarrow \overrightarrow{p}=\hat{i}+\left( 1-2\lambda \right)\hat{j}+\left( -1+2\lambda \right)\hat{k} \\
\end{align}\]
Note: We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are orthogonal unit vectors (vectors with magnitude 1) along $x,y$ and $z$ axes respectively. If we want to find the position vector of midpoint , it is is given by $\dfrac{\overrightarrow{a}+\overrightarrow{b}}{2}$ and the position vector of any point that divides the line segment AB at a ratio $m:n$ is given by $\dfrac{m\overrightarrow{a}+n\overrightarrow{b}}{m+n}$. We note that the position vector of the point system reference is unique.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

