
Find the polar coordinates where the Cartesian coordinates are \[\]
(i)$\left( \sqrt{2},\sqrt{2} \right)$\[\]
(ii)$\left( 0,\dfrac{1}{2} \right)$\[\]
(iii)$\left( \dfrac{-1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}} \right)$\[\]
(iv)$\left( \dfrac{3}{2},\dfrac{3\sqrt{3}}{2} \right)$\[\]
(v) $\left( -3,0 \right)$\[\]
(v) $\left( -\sqrt{2},\sqrt{2} \right)$\[\]
Answer
555.6k+ views
Hint: We recall the definitions of the polar coordinates $\left( r,\theta \right)$and Cartesian coordinates $\left( x,y \right)$. We find $r$ as the distance between origin and the Cartesian point as $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ and $\theta $ as the angle the ray joining the origin and the point makes with positive $x-$axis $\theta =\operatorname{atan}2\theta $ where $\operatorname{atan}2\left( y,x \right)$ represents argument inverse tangent function. \[\]
Complete step by step answer:
We know that Cartesian coordinate system the position of the any point on the plane is represented by an ordered pair $\left( x,y \right)$ where $x$is called abscissa and calculated as the distance of the point from $y-$axis and $y$ is called ordinate and calculated as the distance of the point from $x-$axis. If we denote the point as P then $\left( x,y \right)$ is Cartesian coordinate of the point P .\[\]
We also know that in the polar coordinate system every point is represented in the plane with an ordered pair $\left( r,\theta \right)$ where $r$ is the distance from a reference point (conventionally origin) and $\theta $ is the angle from a reference direction (conventionally positive direction of $x-$axis) . The reference point is called the pole and the reference direction is called the polar axis. \[\]
We can convert the Cartesian coordinate $\left( x,y \right)$ to polar coordinate $\left( r,\theta \right)$ of a point using the following relations
\[\begin{align}
& r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
& \theta =\operatorname{atan}2\left( y,x \right) \\
\end{align}\]
The function $\operatorname{atan}2\left( y,x \right)$ called 2-argument inverse tangent is defined as follows;
\[\theta =\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{y}{x} \right) & \text{if }x>0 \\
{{\tan }^{-1}}\left( \dfrac{y}{x} \right)+\pi & \text{if }x<0\text{ and }y\ge 0 \\
{{\tan }^{-1}}\left( \dfrac{y}{x} \right)-\pi & \text{if }x<0\text{ and }y<0 \\
\dfrac{\pi }{2} & \text{if }x=0\text{ and }y>0 \\
-\dfrac{\pi }{2} & \text{if }x=0\text{ and }y>0 \\
\text{undefined} & \text{if }x=0\text{ and }y=0 \\
\end{matrix} \right.\]
(i) We are given the Cartesian coordinates$\left( \sqrt{2},\sqrt{2} \right)$. So we have $x=\sqrt{2}>0,y=\sqrt{2}>0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( \sqrt{2} \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}}=\sqrt{2+2}=\sqrt{4}=2 \\
& \theta ={{\tan }^{-1}}\dfrac{\sqrt{2}}{\sqrt{2}}={{\tan }^{-1}}1=\dfrac{\pi }{4} \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( 2,\dfrac{\pi }{4} \right)$\[\]
(ii) We are given the Cartesian coordinates$\left( 0,\dfrac{1}{2} \right)$. So we have $x=0,y=\dfrac{1}{2}>0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( \dfrac{1}{2} \right)}^{2}}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2} \\
& \theta =\dfrac{\pi }{2} \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( \dfrac{1}{2},\dfrac{\pi }{2} \right)$\[\]
(iii) We are given the Cartesian coordinates$\left( \dfrac{-1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}} \right)$. So we have $x=\dfrac{-1}{\sqrt{2}}<0,y=\dfrac{-1}{\sqrt{2}}<0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( \dfrac{-1}{\sqrt{2}} \right)}^{2}}+{{\left( \dfrac{-1}{\sqrt{2}} \right)}^{2}}}=\sqrt{\dfrac{1}{2}+\dfrac{1}{2}}=\sqrt{1}=1 \\
& \theta ={{\tan }^{-1}}\dfrac{\dfrac{-1}{\sqrt{2}}}{\dfrac{-1}{\sqrt{2}}}-\pi ={{\tan }^{-1}}1-\pi =\dfrac{\pi }{4}-\pi =\dfrac{-3\pi }{4} \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( 1,\dfrac{-3\pi }{4} \right)$\[\]
(iv) We are given the Cartesian coordinates$\left( \dfrac{3}{2},\dfrac{3\sqrt{3}}{2} \right)$. So we have $x=\dfrac{3}{2}>0,y=\dfrac{3\sqrt{3}}{2}>0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( \dfrac{3}{2} \right)}^{2}}+{{\left( \dfrac{3\sqrt{3}}{2} \right)}^{2}}}=\sqrt{\dfrac{9}{4}+\dfrac{27}{4}}=\sqrt{\dfrac{36}{4}}=\sqrt{9}=3 \\
& \theta ={{\tan }^{-1}}\dfrac{\dfrac{3\sqrt{3}}{2}}{\dfrac{3}{2}}={{\tan }^{-1}}\sqrt{3}=\dfrac{\pi }{3} \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( 3,\dfrac{\pi }{3} \right)$\[\]
(v) We are given the Cartesian coordinates$\left( -3,0 \right)$. So we have $x=-3<0,y=0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( -3 \right)}^{2}}+{{\left( 0 \right)}^{2}}}=\sqrt{9}=3 \\
& \theta ={{\tan }^{-1}}\dfrac{0}{-3}+\pi ={{\tan }^{-1}}0+\pi =\pi \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( 1,\pi \right)$\[\]
(vi) We are given the Cartesian coordinates$\left( -\sqrt{2},-\sqrt{2} \right)$. So we have $x=-\sqrt{2}<0,y=-\sqrt{2}<0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( -\sqrt{2} \right)}^{2}}+{{\left( -\sqrt{2} \right)}^{2}}}=\sqrt{2+2}=\sqrt{4}=2 \\
& \theta ={{\tan }^{-1}}\dfrac{-\sqrt{2}}{-\sqrt{2}}-\pi ={{\tan }^{-1}}1=\dfrac{\pi }{4}-\pi =\dfrac{-3\pi }{4} \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( 2,\dfrac{-3\pi }{4} \right)$\[\]
Note: We note that $r$(also called radial coordinate) is always positive and $\theta $(also called angular coordinate) is always measured in radian. The polar coordinate for origin does not exist. We can also convert the angle $\dfrac{-3\pi }{4}$to positive by adding $2\pi $. We can alternatively find $\theta $ with $x$ and $r$ as $\theta ={{\tan }^{-1}}\left( \dfrac{x}{r} \right)$ with the condition$y\ge 0,r\ne 0$, $\theta =-{{\tan }^{-1}}\left( \dfrac{x}{r} \right)$ with the condition $y<0$ and $\theta $ is undefined if $r=0$.
Complete step by step answer:
We know that Cartesian coordinate system the position of the any point on the plane is represented by an ordered pair $\left( x,y \right)$ where $x$is called abscissa and calculated as the distance of the point from $y-$axis and $y$ is called ordinate and calculated as the distance of the point from $x-$axis. If we denote the point as P then $\left( x,y \right)$ is Cartesian coordinate of the point P .\[\]
We also know that in the polar coordinate system every point is represented in the plane with an ordered pair $\left( r,\theta \right)$ where $r$ is the distance from a reference point (conventionally origin) and $\theta $ is the angle from a reference direction (conventionally positive direction of $x-$axis) . The reference point is called the pole and the reference direction is called the polar axis. \[\]
We can convert the Cartesian coordinate $\left( x,y \right)$ to polar coordinate $\left( r,\theta \right)$ of a point using the following relations
\[\begin{align}
& r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
& \theta =\operatorname{atan}2\left( y,x \right) \\
\end{align}\]
The function $\operatorname{atan}2\left( y,x \right)$ called 2-argument inverse tangent is defined as follows;
\[\theta =\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{y}{x} \right) & \text{if }x>0 \\
{{\tan }^{-1}}\left( \dfrac{y}{x} \right)+\pi & \text{if }x<0\text{ and }y\ge 0 \\
{{\tan }^{-1}}\left( \dfrac{y}{x} \right)-\pi & \text{if }x<0\text{ and }y<0 \\
\dfrac{\pi }{2} & \text{if }x=0\text{ and }y>0 \\
-\dfrac{\pi }{2} & \text{if }x=0\text{ and }y>0 \\
\text{undefined} & \text{if }x=0\text{ and }y=0 \\
\end{matrix} \right.\]
(i) We are given the Cartesian coordinates$\left( \sqrt{2},\sqrt{2} \right)$. So we have $x=\sqrt{2}>0,y=\sqrt{2}>0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( \sqrt{2} \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}}=\sqrt{2+2}=\sqrt{4}=2 \\
& \theta ={{\tan }^{-1}}\dfrac{\sqrt{2}}{\sqrt{2}}={{\tan }^{-1}}1=\dfrac{\pi }{4} \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( 2,\dfrac{\pi }{4} \right)$\[\]
(ii) We are given the Cartesian coordinates$\left( 0,\dfrac{1}{2} \right)$. So we have $x=0,y=\dfrac{1}{2}>0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( \dfrac{1}{2} \right)}^{2}}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2} \\
& \theta =\dfrac{\pi }{2} \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( \dfrac{1}{2},\dfrac{\pi }{2} \right)$\[\]
(iii) We are given the Cartesian coordinates$\left( \dfrac{-1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}} \right)$. So we have $x=\dfrac{-1}{\sqrt{2}}<0,y=\dfrac{-1}{\sqrt{2}}<0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( \dfrac{-1}{\sqrt{2}} \right)}^{2}}+{{\left( \dfrac{-1}{\sqrt{2}} \right)}^{2}}}=\sqrt{\dfrac{1}{2}+\dfrac{1}{2}}=\sqrt{1}=1 \\
& \theta ={{\tan }^{-1}}\dfrac{\dfrac{-1}{\sqrt{2}}}{\dfrac{-1}{\sqrt{2}}}-\pi ={{\tan }^{-1}}1-\pi =\dfrac{\pi }{4}-\pi =\dfrac{-3\pi }{4} \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( 1,\dfrac{-3\pi }{4} \right)$\[\]
(iv) We are given the Cartesian coordinates$\left( \dfrac{3}{2},\dfrac{3\sqrt{3}}{2} \right)$. So we have $x=\dfrac{3}{2}>0,y=\dfrac{3\sqrt{3}}{2}>0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( \dfrac{3}{2} \right)}^{2}}+{{\left( \dfrac{3\sqrt{3}}{2} \right)}^{2}}}=\sqrt{\dfrac{9}{4}+\dfrac{27}{4}}=\sqrt{\dfrac{36}{4}}=\sqrt{9}=3 \\
& \theta ={{\tan }^{-1}}\dfrac{\dfrac{3\sqrt{3}}{2}}{\dfrac{3}{2}}={{\tan }^{-1}}\sqrt{3}=\dfrac{\pi }{3} \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( 3,\dfrac{\pi }{3} \right)$\[\]
(v) We are given the Cartesian coordinates$\left( -3,0 \right)$. So we have $x=-3<0,y=0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( -3 \right)}^{2}}+{{\left( 0 \right)}^{2}}}=\sqrt{9}=3 \\
& \theta ={{\tan }^{-1}}\dfrac{0}{-3}+\pi ={{\tan }^{-1}}0+\pi =\pi \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( 1,\pi \right)$\[\]
(vi) We are given the Cartesian coordinates$\left( -\sqrt{2},-\sqrt{2} \right)$. So we have $x=-\sqrt{2}<0,y=-\sqrt{2}<0$. Then we use conversion formula to have
\[\begin{align}
& r=\sqrt{{{\left( -\sqrt{2} \right)}^{2}}+{{\left( -\sqrt{2} \right)}^{2}}}=\sqrt{2+2}=\sqrt{4}=2 \\
& \theta ={{\tan }^{-1}}\dfrac{-\sqrt{2}}{-\sqrt{2}}-\pi ={{\tan }^{-1}}1=\dfrac{\pi }{4}-\pi =\dfrac{-3\pi }{4} \\
\end{align}\]
So the required polar coordinate is $\left( r,\theta \right)=\left( 2,\dfrac{-3\pi }{4} \right)$\[\]
Note: We note that $r$(also called radial coordinate) is always positive and $\theta $(also called angular coordinate) is always measured in radian. The polar coordinate for origin does not exist. We can also convert the angle $\dfrac{-3\pi }{4}$to positive by adding $2\pi $. We can alternatively find $\theta $ with $x$ and $r$ as $\theta ={{\tan }^{-1}}\left( \dfrac{x}{r} \right)$ with the condition$y\ge 0,r\ne 0$, $\theta =-{{\tan }^{-1}}\left( \dfrac{x}{r} \right)$ with the condition $y<0$ and $\theta $ is undefined if $r=0$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

