
Find the point on the x-axis which is equidistant from $\left( {2, - 5} \right)$ and $\left( { - 2,9} \right)$.
Answer
582k+ views
Hint: The point is on x-axis . So, its y-coordinate will be zero. Then, the point will be $\left( {a,0} \right)$. Also, the distance between two given points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ can be calculated by the formula, $\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} $.
Complete step-by-step answer:
The given points are $\left( {2, - 5} \right)$ and $\left( { - 2,9} \right)$.
We have to find a point on x-axis. Therefore, its y-coordinate will be $0$.
Let x-coordinate of the point $ = a$
So, the point $ = \left( {a,0} \right)$
As mentioned in the question, the two points$\left( {2, - 5} \right)$ and $\left( { - 2,9} \right)$ are equidistant from $\left( {a,0} \right)$.
So, distance between $\left( {a,0} \right)$ and $\left( {2, - 5} \right)$=$\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} $
$ = \sqrt {{{\left( {a - 2} \right)}^2} + {{\left( {0 + 5} \right)}^2}} $
Similarly, distance between $\left( {a,0} \right)$ and $\left( { - 2,9} \right)$$ = \sqrt {{{\left( {a + 2} \right)}^2} + {{\left( {0 - 9} \right)}^2}} $
Now, the points are equidistant.
So, $\sqrt {{{\left( {a - 2} \right)}^2} + {{\left( {0 + 5} \right)}^2}} $= $\sqrt {{{\left( {a + 2} \right)}^2} + {{\left( {0 - 9} \right)}^2}} $
Squaring both sides,
$ \Rightarrow $${\left( {a - 2} \right)^2} + {\left( {0 + 5} \right)^2}$= ${\left( {a + 2} \right)^2} + {\left( {0 - 9} \right)^2}$
$ \Rightarrow $${a^2} + 4 - 4a + 25 = {a^2} + 4 + 4a + 81$
$ \Rightarrow $${a^2} - 4a - {a^2} - 4a = 4 + 81 - 4 - 25$
$ \Rightarrow $$ - 8a = 56$
$ \Rightarrow $$a = \dfrac{{56}}{{ - 8}}$
$ \Rightarrow $$a = - 7$
Hence, the point on x-axis is $\left( { - 7,0} \right)$.
Note: If the point lies on x-axis then the y coordinate will be equal to zero. If the point lies on the y-axis then the x coordinate will be equal to zero. Here the mid-point formula can’t be used because it is not necessary that the mid-point lies on the x-axis.
Complete step-by-step answer:
The given points are $\left( {2, - 5} \right)$ and $\left( { - 2,9} \right)$.
We have to find a point on x-axis. Therefore, its y-coordinate will be $0$.
Let x-coordinate of the point $ = a$
So, the point $ = \left( {a,0} \right)$
As mentioned in the question, the two points$\left( {2, - 5} \right)$ and $\left( { - 2,9} \right)$ are equidistant from $\left( {a,0} \right)$.
So, distance between $\left( {a,0} \right)$ and $\left( {2, - 5} \right)$=$\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} $
$ = \sqrt {{{\left( {a - 2} \right)}^2} + {{\left( {0 + 5} \right)}^2}} $
Similarly, distance between $\left( {a,0} \right)$ and $\left( { - 2,9} \right)$$ = \sqrt {{{\left( {a + 2} \right)}^2} + {{\left( {0 - 9} \right)}^2}} $
Now, the points are equidistant.
So, $\sqrt {{{\left( {a - 2} \right)}^2} + {{\left( {0 + 5} \right)}^2}} $= $\sqrt {{{\left( {a + 2} \right)}^2} + {{\left( {0 - 9} \right)}^2}} $
Squaring both sides,
$ \Rightarrow $${\left( {a - 2} \right)^2} + {\left( {0 + 5} \right)^2}$= ${\left( {a + 2} \right)^2} + {\left( {0 - 9} \right)^2}$
$ \Rightarrow $${a^2} + 4 - 4a + 25 = {a^2} + 4 + 4a + 81$
$ \Rightarrow $${a^2} - 4a - {a^2} - 4a = 4 + 81 - 4 - 25$
$ \Rightarrow $$ - 8a = 56$
$ \Rightarrow $$a = \dfrac{{56}}{{ - 8}}$
$ \Rightarrow $$a = - 7$
Hence, the point on x-axis is $\left( { - 7,0} \right)$.
Note: If the point lies on x-axis then the y coordinate will be equal to zero. If the point lies on the y-axis then the x coordinate will be equal to zero. Here the mid-point formula can’t be used because it is not necessary that the mid-point lies on the x-axis.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

