
Find the number of prime numbers between \[20\] and \[40\], both inclusive.
Answer
510k+ views
Hint: prime numbers are the positive integers, those numbers are having only two factors, 1 and the integer itself. Prime numbers cannot have other factors other than, 1 and the integer itself.
The numbers having other factors along with 1 and itself, those numbers are called composite numbers.
Complete step-by-step answer:
From the question it is clear that we have to find the number of prime numbers between \[20\] and \[40\], both inclusive.
In mathematics, prime numbers are the natural numbers and also positive integers.
prime numbers are having only two factors, 1 and the integer itself. Prime numbers cannot have other factors other than, 1 and the integer itself.
The numbers having other factors along with 1 and itself, those numbers are called composite numbers.
Let us try to write all the numbers between \[20\] and \[40\], both inclusive.
\[20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40\].
So, these are the numbers between \[20\] and \[40\].
Observe these numbers carefully, we can see only
\[23,29,31,37\] are the four numbers that do not have factors other than 1 and itself.
Since these numbers \[23,29,31,37\]are divisible by themselves and 1, they are prime numbers.
Other numbers except \[23,29,31,37\]in the list of numbers between \[20\] and \[40\], are all considered as composite numbers because they are having other factors along with 1 and itself.
Now we can conclude that there are four prime numbers between\[20\] and \[40\], both inclusive.
Note: Students should have more conceptual knowledge about prime numbers and composite numbers. conceptual error may lead to this solution wrong.
The numbers having other factors along with 1 and itself, those numbers are called composite numbers.
Complete step-by-step answer:
From the question it is clear that we have to find the number of prime numbers between \[20\] and \[40\], both inclusive.
In mathematics, prime numbers are the natural numbers and also positive integers.
prime numbers are having only two factors, 1 and the integer itself. Prime numbers cannot have other factors other than, 1 and the integer itself.
The numbers having other factors along with 1 and itself, those numbers are called composite numbers.
Let us try to write all the numbers between \[20\] and \[40\], both inclusive.
\[20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40\].
So, these are the numbers between \[20\] and \[40\].
Observe these numbers carefully, we can see only
\[23,29,31,37\] are the four numbers that do not have factors other than 1 and itself.
Since these numbers \[23,29,31,37\]are divisible by themselves and 1, they are prime numbers.
Other numbers except \[23,29,31,37\]in the list of numbers between \[20\] and \[40\], are all considered as composite numbers because they are having other factors along with 1 and itself.
Now we can conclude that there are four prime numbers between\[20\] and \[40\], both inclusive.
Note: Students should have more conceptual knowledge about prime numbers and composite numbers. conceptual error may lead to this solution wrong.
Recently Updated Pages
Master Class 6 English: Engaging Questions & Answers for Success

Master Class 6 Social Science: Engaging Questions & Answers for Success

Master Class 6 Maths: Engaging Questions & Answers for Success

Master Class 6 Science: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
Give 10 examples for herbs , shrubs , climbers , creepers

What is the capital city of Australia? A) Sydney B) Melbourne C) Brisbane D) Canberra

Four bells toll together at 900am They toll after 7811 class 6 maths CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which places in India experience sunrise first and class 9 social science CBSE


