
Find the multiplicative inverse of the complex number \[\sqrt 5 + {\rm{3i}}\].
Answer
482.4k+ views
Hint:
Here in this question we have to find the multiplicative inverse of the complex number. Multiplicative inverse equal to its inverse. So, by expanding the inverse and rationalizing it will give you the value of the multiplicative inverse of the complex number.
Complete step by step solution:
We all know that multiplicative inverse of \[{\rm{z = }}{{\rm{z}}^{ - 1}}\] and multiplicative inverse of \[{\rm{z = }}\dfrac{1}{{\rm{z}}}\].
According to the question \[{\rm{z = }}\sqrt 5 + {\rm{3i}}\]
Therefore, multiplicative inverse of \[\sqrt 5 + {\rm{3i}} = \dfrac{1}{{\sqrt 5 + {\rm{3i}}}}\]
Now, we have to rationalize it.
\[\sqrt 5 + 3{\rm{i}} = \dfrac{1}{{\sqrt 5 + 3{\rm{i}}}} \times \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{\sqrt 5 - 3{\rm{i}}}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{(\sqrt 5 + 3{\rm{i)}} \times (\sqrt 5 - 3{\rm{i}})}}\]
By simply using \[({\rm{a}} + {\rm{b)}} \times {\rm{(a}} - {\rm{b)}} = {{\rm{a}}^2} - {{\rm{b}}^2}\] formula, we get
\[\sqrt 5 + 3{\rm{i}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{{{(\sqrt 5 )}^2} - {{(3{\rm{i)}}}^2}}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{5 - 9{{\rm{i}}^2}}}\]
As we all know that the value of \[{{\rm{i}}^2} = - 1\] so, equation became
\[\begin{array}{l}\sqrt 5 + 3{\rm{i}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{5 - 9 \times ( - 1)}}\\ = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{5 + 9}}\\ = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{14}}\end{array}\]
Therefore, multiplicative inverse of \[\sqrt 5 + {\rm{3i}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{14}} = \dfrac{{\sqrt 5 }}{{14}} - \dfrac{{3{\rm{i}}}}{{14}}\]
Note:
Alternate way of finding the multiplicative inverse of z is by using the direct formula of multiplicative inverse of \[{\rm{z = }}{{\rm{z}}^{ - 1}} = \dfrac{{\overline {\rm{z}} }}{{{{\left| z \right|}^2}}}\].
According to the question \[{\rm{z = }}\sqrt 5 + 3{\rm{i}}\]
Then, \[\overline {\rm{z}} = \sqrt 5 - 3{\rm{i}}\] and \[{\left| z \right|^2} = {(\sqrt 5 )^2} + {(3)^2} = 5 + 9 = 14\].
By putting the values in the formula of multiplicative inverse, we get
Multiplicative inverse of \[\sqrt 5 + {\rm{3i}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{14}} = \dfrac{{\sqrt 5 }}{{14}} - \dfrac{{3{\rm{i}}}}{{14}}\]
Here in this question we have to find the multiplicative inverse of the complex number. Multiplicative inverse equal to its inverse. So, by expanding the inverse and rationalizing it will give you the value of the multiplicative inverse of the complex number.
Complete step by step solution:
We all know that multiplicative inverse of \[{\rm{z = }}{{\rm{z}}^{ - 1}}\] and multiplicative inverse of \[{\rm{z = }}\dfrac{1}{{\rm{z}}}\].
According to the question \[{\rm{z = }}\sqrt 5 + {\rm{3i}}\]
Therefore, multiplicative inverse of \[\sqrt 5 + {\rm{3i}} = \dfrac{1}{{\sqrt 5 + {\rm{3i}}}}\]
Now, we have to rationalize it.
\[\sqrt 5 + 3{\rm{i}} = \dfrac{1}{{\sqrt 5 + 3{\rm{i}}}} \times \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{\sqrt 5 - 3{\rm{i}}}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{(\sqrt 5 + 3{\rm{i)}} \times (\sqrt 5 - 3{\rm{i}})}}\]
By simply using \[({\rm{a}} + {\rm{b)}} \times {\rm{(a}} - {\rm{b)}} = {{\rm{a}}^2} - {{\rm{b}}^2}\] formula, we get
\[\sqrt 5 + 3{\rm{i}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{{{(\sqrt 5 )}^2} - {{(3{\rm{i)}}}^2}}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{5 - 9{{\rm{i}}^2}}}\]
As we all know that the value of \[{{\rm{i}}^2} = - 1\] so, equation became
\[\begin{array}{l}\sqrt 5 + 3{\rm{i}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{5 - 9 \times ( - 1)}}\\ = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{5 + 9}}\\ = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{14}}\end{array}\]
Therefore, multiplicative inverse of \[\sqrt 5 + {\rm{3i}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{14}} = \dfrac{{\sqrt 5 }}{{14}} - \dfrac{{3{\rm{i}}}}{{14}}\]
Note:
Alternate way of finding the multiplicative inverse of z is by using the direct formula of multiplicative inverse of \[{\rm{z = }}{{\rm{z}}^{ - 1}} = \dfrac{{\overline {\rm{z}} }}{{{{\left| z \right|}^2}}}\].
According to the question \[{\rm{z = }}\sqrt 5 + 3{\rm{i}}\]
Then, \[\overline {\rm{z}} = \sqrt 5 - 3{\rm{i}}\] and \[{\left| z \right|^2} = {(\sqrt 5 )^2} + {(3)^2} = 5 + 9 = 14\].
By putting the values in the formula of multiplicative inverse, we get
Multiplicative inverse of \[\sqrt 5 + {\rm{3i}} = \dfrac{{\sqrt 5 - 3{\rm{i}}}}{{14}} = \dfrac{{\sqrt 5 }}{{14}} - \dfrac{{3{\rm{i}}}}{{14}}\]
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
