
Find the locus of the point which is equidistant from the points A(0, 2, 3) and B(2, -2, 1).
Answer
612.6k+ views
Hint: Take the point P as (x, y, z) use the distance formula which is,
$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}$. Then equate PA and PB as they are equidistant and find the result.
Complete step-by-step answer:
Let P assume a point (x, y, z) such that PA distance is always equal to PB distance, as shown in figure below:
Then we can represent it as
PA = PB
As the values are the same then if we square their values it will also remain the same.
So we can say,
$P{{A}^{2}}=P{{B}^{2}}$
At first for finding PA we have to use distance formula which is
$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}$
Where the points are $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ whose distance is to find out.
So if point are P(x, y, z) and A(0,2,3)
Then,
$PA=\sqrt{{{\left( x-0 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}}$
Now if points are P(x, y, z) and B (2,-2,1).
$PB=\sqrt{{{\left( x-2 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}}$
Now as we know that,
PA = PB
And further we also know,
$P{{A}^{2}}=P{{B}^{2}}$
So we can write it as,
${{(x-0)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}={{\left( x-2 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}$
Now by further expanding by using formula as, ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
We can write is as,
${{x}^{2}}+{{y}^{2}}-4y+4+{{z}^{2}}-6z+9={{x}^{2}}-4x+4+{{y}^{2}}+4y+4+{{z}^{2}}-2z+1$
Now on further simplifying by adding constant we can write it as,
${{x}^{2}}+{{y}^{2}}-4y+{{z}^{2}}-6z+13={{x}^{2}}+{{y}^{2}}-4x+4y+{{z}^{2}}-2z+9$
Now cancelling $\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)$ to both the sides of equation we get,
-4y – 6z + 13 = -4x + 4y – 2z + 9
Now adding (4x – 4y + 2z – 9) to both sides of equation we get,
4x – 8y – 4z + 4 =0
Now dividing by ‘4’ throughout the equation we get,
x- 2y – z + 1 = 0
Hence x- 2y – z + 1 = 0 this is the required equation of locus.
Note: In the question we asked to find the locus take is as a variable and try to make an equation or relation with. Also while expanding be careful about any calculation error so that answer comes one go.The locus of a point which is equidistant from two given points is actually the perpendicular bisector of the segment that joins the two points. We can find the locus using this fact as well.
$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}$. Then equate PA and PB as they are equidistant and find the result.
Complete step-by-step answer:
Let P assume a point (x, y, z) such that PA distance is always equal to PB distance, as shown in figure below:
Then we can represent it as
PA = PB
As the values are the same then if we square their values it will also remain the same.
So we can say,
$P{{A}^{2}}=P{{B}^{2}}$
At first for finding PA we have to use distance formula which is
$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}$
Where the points are $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ whose distance is to find out.
So if point are P(x, y, z) and A(0,2,3)
Then,
$PA=\sqrt{{{\left( x-0 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}}$
Now if points are P(x, y, z) and B (2,-2,1).
$PB=\sqrt{{{\left( x-2 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}}$
Now as we know that,
PA = PB
And further we also know,
$P{{A}^{2}}=P{{B}^{2}}$
So we can write it as,
${{(x-0)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}={{\left( x-2 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}$
Now by further expanding by using formula as, ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
We can write is as,
${{x}^{2}}+{{y}^{2}}-4y+4+{{z}^{2}}-6z+9={{x}^{2}}-4x+4+{{y}^{2}}+4y+4+{{z}^{2}}-2z+1$
Now on further simplifying by adding constant we can write it as,
${{x}^{2}}+{{y}^{2}}-4y+{{z}^{2}}-6z+13={{x}^{2}}+{{y}^{2}}-4x+4y+{{z}^{2}}-2z+9$
Now cancelling $\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)$ to both the sides of equation we get,
-4y – 6z + 13 = -4x + 4y – 2z + 9
Now adding (4x – 4y + 2z – 9) to both sides of equation we get,
4x – 8y – 4z + 4 =0
Now dividing by ‘4’ throughout the equation we get,
x- 2y – z + 1 = 0
Hence x- 2y – z + 1 = 0 this is the required equation of locus.
Note: In the question we asked to find the locus take is as a variable and try to make an equation or relation with. Also while expanding be careful about any calculation error so that answer comes one go.The locus of a point which is equidistant from two given points is actually the perpendicular bisector of the segment that joins the two points. We can find the locus using this fact as well.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

