
Find the length of the diagonal of a rectangle whose length is 15 cm and breadth is 8 cm.
Answer
499.5k+ views
Hint: To solve the given question, we will first find out what a rectangle is. After finding out, we will divide the rectangle by making a diagonal. Now, we will apply the Pythagoras theorem in the obtained right-angled triangle. The Pythagoras theorem says that, where H is the hypotenuse, B is the base and P is the perpendicular. We will put the value of the base and the perpendicular as the length and breadth of the rectangle and find out the value of the hypotenuse which is the diagonal of the given rectangle.
Complete step by step answer:
For a better understanding of the question, we will first find out what a rectangle is and then we will draw a rough sketch of the rectangle and a diagonal in it. A rectangle is a quadrilateral in which opposite sides are parallel and equal in length. The adjacent sides may be equal. The interior angle in the rectangle is A rough sketch of the rectangle is shown below.
Here, AB = CD is the length of the rectangle and AD = BC is the breadth of the rectangle and BD is the diagonal. We can see that the triangle BCD is a right-angled triangle. So, here we will consider the right-angled triangle BCD. In this triangle, we will apply the Pythagoras theorem. The Pythagoras theorem says that the square of the hypotenuse (i.e. the side opposite to ) is equal to the sum of the squares of the perpendicular and the base, i.e,
In our case, H = BD, B = CD and P = BC. On putting these values in the above formula, we will get,
Thus, the length of the diagonal is 17 cm.
Note: We have calculated the length of the diagonal BD. Instead, we can also calculate the diagonal AC of the rectangle.
Now, we will apply the Pythagoras theorem in triangle ACD. Thus, we have,
Thus, the length of the diagonal AC is 17 cm and it is correct because the length of the diagonals AC and BD will be the same.
Complete step by step answer:
For a better understanding of the question, we will first find out what a rectangle is and then we will draw a rough sketch of the rectangle and a diagonal in it. A rectangle is a quadrilateral in which opposite sides are parallel and equal in length. The adjacent sides may be equal. The interior angle in the rectangle is

Here, AB = CD is the length of the rectangle and AD = BC is the breadth of the rectangle and BD is the diagonal. We can see that the triangle BCD is a right-angled triangle. So, here we will consider the right-angled triangle BCD. In this triangle, we will apply the Pythagoras theorem. The Pythagoras theorem says that the square of the hypotenuse (i.e. the side opposite to
In our case, H = BD, B = CD and P = BC. On putting these values in the above formula, we will get,
Thus, the length of the diagonal is 17 cm.
Note: We have calculated the length of the diagonal BD. Instead, we can also calculate the diagonal AC of the rectangle.

Now, we will apply the Pythagoras theorem in triangle ACD. Thus, we have,
Thus, the length of the diagonal AC is 17 cm and it is correct because the length of the diagonals AC and BD will be the same.
Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
School Full course for MAHARASHTRABOARD students
₹33,300 per year
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
What is the past participle of wear Is it worn or class 10 english CBSE

What is Whales collective noun class 10 english CBSE

What is potential and actual resources

For what value of k is 3 a zero of the polynomial class 10 maths CBSE

What is the full form of POSCO class 10 social science CBSE

Which three causes led to the subsistence crisis in class 10 social science CBSE
