Answer
Verified
453.9k+ views
Hint: In order to solve this problem you need to make the equation such that you can break some of the terms into the mixed fraction and then you need to assume the integer as variable assuming its minimum value as 1 and then with reference to that you need to solve for x and y solving the equation algebraically to get the right answer.
Complete step-by-step answer:
According to the question, we have to find the least values of $x$ and $y$. So, we solve for positive integers.
As given \[77y - 30x = 295\] …….(1)
By Rearranging the above equation, we get
$ \Rightarrow \dfrac{{77y}}{{30}} - x = \dfrac{{295}}{{30}}$
In the above equation break down the $y$ term as follows
$ \Rightarrow \dfrac{{17y}}{{30}} + 2y - x = \dfrac{{295}}{{30}}$
And if we notice carefully $\dfrac{{295}}{{30}}$ can further be broken down as $9 + \dfrac{{25}}{{30}}$
So Now $\dfrac{{17y}}{{30}} + 2y - x = 9 + \dfrac{{25}}{{30}}$ or we can write $\dfrac{{17y - 25}}{{30}} + 2y - x = 9$
And as in the beginning it is stated that we are solving for positive integers.
Therefore, $\dfrac{{17y - 25}}{{30}}$ must be an integer value.
Now, we multiply by $23$ as when it is multiplied by $23$ then $23 \times 17 = 391$ and when $391$ divided by $30$ leaves remainder $1$. i.e.,
\[ \Rightarrow \dfrac{{391y - 575}}{{30}} = \] integer. This equation when broken down gives
$ \Rightarrow 13y + \dfrac{y}{{30}} - 19 - \dfrac{5}{{30}}$
$ \Rightarrow 13y - 19 + \dfrac{{y - 5}}{{30}}$
$ \Rightarrow \dfrac{{y - 5}}{{30}} = $ Integer
Let the integer be p
$\dfrac{{y - 5}}{{30}} = $p
By cross multiplication, we get
$ \Rightarrow y = 30{\text{p}} + 5$……………..(2)
By putting the value of $y$ in equation (1)
\[ \Rightarrow 77\left( {30{\text{p}} + 5} \right) - 30x = 295\]
\[ \Rightarrow 2310{\text{p}} + 385 - 30x = 295\]
\[ \Rightarrow 30x = 2210{\text{p}} - 90\]
\[ \Rightarrow x = 77{\text{p}} - 30\] …………….(3)
From the equation (2) and (3) we can see that the value of $x$ and $y$ is negative for integer p $ \leqslant 1$
which is not possible as we are solving for positive integers.
So, the least value of p is $1$.
Substituting p$ = 1$ in (2) and (3)
$ \Rightarrow y = 35, x = 47$
So, the correct answer is “Option C”.
Note: When you get to solve such problems you need to know that an equation can be modified by dividing or multiplying something on both sides. You also need to know that $a\dfrac{b}{c} = \dfrac{{ac + b}}{c}$. Knowing this will solve your problem and will give you the right answer.
Complete step-by-step answer:
According to the question, we have to find the least values of $x$ and $y$. So, we solve for positive integers.
As given \[77y - 30x = 295\] …….(1)
By Rearranging the above equation, we get
$ \Rightarrow \dfrac{{77y}}{{30}} - x = \dfrac{{295}}{{30}}$
In the above equation break down the $y$ term as follows
$ \Rightarrow \dfrac{{17y}}{{30}} + 2y - x = \dfrac{{295}}{{30}}$
And if we notice carefully $\dfrac{{295}}{{30}}$ can further be broken down as $9 + \dfrac{{25}}{{30}}$
So Now $\dfrac{{17y}}{{30}} + 2y - x = 9 + \dfrac{{25}}{{30}}$ or we can write $\dfrac{{17y - 25}}{{30}} + 2y - x = 9$
And as in the beginning it is stated that we are solving for positive integers.
Therefore, $\dfrac{{17y - 25}}{{30}}$ must be an integer value.
Now, we multiply by $23$ as when it is multiplied by $23$ then $23 \times 17 = 391$ and when $391$ divided by $30$ leaves remainder $1$. i.e.,
\[ \Rightarrow \dfrac{{391y - 575}}{{30}} = \] integer. This equation when broken down gives
$ \Rightarrow 13y + \dfrac{y}{{30}} - 19 - \dfrac{5}{{30}}$
$ \Rightarrow 13y - 19 + \dfrac{{y - 5}}{{30}}$
$ \Rightarrow \dfrac{{y - 5}}{{30}} = $ Integer
Let the integer be p
$\dfrac{{y - 5}}{{30}} = $p
By cross multiplication, we get
$ \Rightarrow y = 30{\text{p}} + 5$……………..(2)
By putting the value of $y$ in equation (1)
\[ \Rightarrow 77\left( {30{\text{p}} + 5} \right) - 30x = 295\]
\[ \Rightarrow 2310{\text{p}} + 385 - 30x = 295\]
\[ \Rightarrow 30x = 2210{\text{p}} - 90\]
\[ \Rightarrow x = 77{\text{p}} - 30\] …………….(3)
From the equation (2) and (3) we can see that the value of $x$ and $y$ is negative for integer p $ \leqslant 1$
which is not possible as we are solving for positive integers.
So, the least value of p is $1$.
Substituting p$ = 1$ in (2) and (3)
$ \Rightarrow y = 35, x = 47$
So, the correct answer is “Option C”.
Note: When you get to solve such problems you need to know that an equation can be modified by dividing or multiplying something on both sides. You also need to know that $a\dfrac{b}{c} = \dfrac{{ac + b}}{c}$. Knowing this will solve your problem and will give you the right answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths