
Find the Least Common Multiple or L.C.M of 2 and 5?
Answer
479.1k+ views
Hint: We must identify the least common multiple (LCM) of 2, 5 from the given question. We will use the prime factorization method to find the LCM. We will write each of the supplied numbers as the product of its prime components. If a prime factor is going to reoccur or repeat, we will write it in exponential form. Then, we'll multiply all of the prime components together with their highest exponent and get the final result.
Complete step-by-step solution:
We have to find the LCM of 2 and 5
We should know the definition of the L.C.M. In arithmetic and number theory, the smallest positive integer that is divisible by each of the given numbers is called the least common multiple. The specified integers can't be zero. To find the LCM of two or more numbers, we can use one of the two methods.
We'll utilize prime factorization to solve this problem.
We will write the provided numbers as the product of their prime components in the prime factorization method. The LCM will now be the product of the prime factors and their highest exponent if any are present.
We have given 2 and 5 which are already prime numbers so there is no further factor of them.
\[ \Rightarrow 2 = {2^1}\]
\[ \Rightarrow 5 = {5^1}\]
We can clearly observe that the maximum power of the prime factors 2 and 5 is 1.
So, we will multiply 2 and 5 to get the L.C.M
\[ \Rightarrow L.C.M = 2 \times 5\]
\[ \Rightarrow L.C.M = 10\]
Hence, the L.CM. of 2 and 5 is 10.\[ \Rightarrow L.C.M = 10\].
Note: We can also remember a short way to find the LCM of two prime numbers which is the LCM of two prime numbers is their product. This is because they cannot be factored. This is applied for two or more than two prime numbers as well.
Complete step-by-step solution:
We have to find the LCM of 2 and 5
We should know the definition of the L.C.M. In arithmetic and number theory, the smallest positive integer that is divisible by each of the given numbers is called the least common multiple. The specified integers can't be zero. To find the LCM of two or more numbers, we can use one of the two methods.
We'll utilize prime factorization to solve this problem.
We will write the provided numbers as the product of their prime components in the prime factorization method. The LCM will now be the product of the prime factors and their highest exponent if any are present.
We have given 2 and 5 which are already prime numbers so there is no further factor of them.
\[ \Rightarrow 2 = {2^1}\]
\[ \Rightarrow 5 = {5^1}\]
We can clearly observe that the maximum power of the prime factors 2 and 5 is 1.
So, we will multiply 2 and 5 to get the L.C.M
\[ \Rightarrow L.C.M = 2 \times 5\]
\[ \Rightarrow L.C.M = 10\]
Hence, the L.CM. of 2 and 5 is 10.\[ \Rightarrow L.C.M = 10\].
Note: We can also remember a short way to find the LCM of two prime numbers which is the LCM of two prime numbers is their product. This is because they cannot be factored. This is applied for two or more than two prime numbers as well.
Recently Updated Pages
Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
What is the capital city of Australia? A) Sydney B) Melbourne C) Brisbane D) Canberra

Which animal has three hearts class 11 biology CBSE

Which one of the following groups comprises states class 8 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Write the 6 fundamental rights of India and explain in detail


