
Why do you find the least common multiple of $ 30 $ and $ 3 $ ?
Answer
443.7k+ views
Hint: LCM (Least common Multiple) is the least or the smallest number with which the given numbers are exactly divisible. It is also known as the least common divisor. LCM can be expressed as the product of constant and HCF. Here first of all we will find the prime factors of the given two numbers and then LCM.
Complete step by step solution:
Find the prime factors of the given two numbers.
Prime factorization is the process of finding which prime numbers can be multiplied together to make the original number, where prime numbers are the numbers greater than $ 1 $ and which are not the product of any two smaller natural numbers. For Example: $ 2,{\text{ 3, 5, 7,}}...... $ $ 2 $ is the prime number as it can have only $ 1 $ factor. Here we will find the product of prime factors one by one for both the given numbers.
$
3 = 1 \times 3 \\
30 = 2 \times 3 \times 5 \\
$
LCM can be expressed as the product of highest power of each factor involved in the numbers.
Therefore, the LCM of the given two numbers $ 3{\text{ and 30 is 30}} $
This is the required solution.
Note :
To solve these types of sums, one should be clear about the concept of HCF and LCM and the prime numbers. HCF is the highest or greatest common multiple whereas the LCM is the least common multiple or least common divisor in two or more given numbers. Prime numbers are the numbers greater than $ 1 $ and which are not the product of any two smaller natural numbers. For Example: $ 2,{\text{ 3, 5, 7,}}...... $ $ 2 $ is the prime number as it can have only $ 1 $ factor. Factors are the number $ 1 $ and the number itself. Also, remember that we get the prime factorization of any composite number.
Complete step by step solution:
Find the prime factors of the given two numbers.
Prime factorization is the process of finding which prime numbers can be multiplied together to make the original number, where prime numbers are the numbers greater than $ 1 $ and which are not the product of any two smaller natural numbers. For Example: $ 2,{\text{ 3, 5, 7,}}...... $ $ 2 $ is the prime number as it can have only $ 1 $ factor. Here we will find the product of prime factors one by one for both the given numbers.
$
3 = 1 \times 3 \\
30 = 2 \times 3 \times 5 \\
$
LCM can be expressed as the product of highest power of each factor involved in the numbers.
Therefore, the LCM of the given two numbers $ 3{\text{ and 30 is 30}} $
This is the required solution.
Note :
To solve these types of sums, one should be clear about the concept of HCF and LCM and the prime numbers. HCF is the highest or greatest common multiple whereas the LCM is the least common multiple or least common divisor in two or more given numbers. Prime numbers are the numbers greater than $ 1 $ and which are not the product of any two smaller natural numbers. For Example: $ 2,{\text{ 3, 5, 7,}}...... $ $ 2 $ is the prime number as it can have only $ 1 $ factor. Factors are the number $ 1 $ and the number itself. Also, remember that we get the prime factorization of any composite number.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
