Answer
Verified
382.5k+ views
Hint: There are various methods for finding the least common multiple and highest common factor of two given numbers. The simplest method to find LCM and HCF is by prime factorization method. Least common multiple is a product of common factors with highest power and all other non-common factors. HCF is the product of the lowest powers of all the common factors. We first break down the given numbers into their prime factors and then find their LCM and HCF according to the definitions.
Complete step-by-step solution:
The numbers given to us in the question are: $12$, $72$, $120$.
We have to find the least common multiple and highest common factor the given three numbers by prime factorization method.
In prime factorization, we represent the numbers as a product of their constituent prime factors. So, we get,
Prime factors of \[12\]$ = 2 \times 2 \times 3$
$ = {2^2} \times 3$
Prime factors of \[72\]$ = 2 \times 2 \times 2 \times 3 \times 3$
$ = {2^3} \times {3^2}$
Prime factors of \[120\]$ = 2 \times 2 \times 2 \times 3 \times 5$
$ = {2^3} \times 3 \times 5$
Now, Least common multiple is a product of common factors with highest power and all other non-common factors. So, finding the least common multiple of the three numbers, we get,
Least common multiple of $12$, $72$ and $120$$ = {2^3} \times {3^2} \times 5$
$ = 8 \times 9 \times 5$
$ = 360$
Hence, the least common multiple of $12$, $72$ and $120$ is $360$.
HCF is the product of the lowest powers of all the common factors.
Now, finding the Highest common factor of $12$, $72$ and $120$, we get,
Highest common factor of $12$, $72$ and $120$$ = {2^2} \times 3$
$ = 4 \times 3 = 12$
So, the highest common factor of $12$, $72$ and $120$ is $12$.
So, the product of HCF and LCM $ = 12 \times 360 = 4320$
Now, the product of the three numbers $ = 12 \times 72 \times 120 = 103680$
So, we can clearly see that the product of LCM and HCF of the three numbers and the product of the three numbers is not equal. Hence, proved.
Note: Least common multiple (LCM) has wide ranging applications in real world as well as in mathematical questions. Knowledge of least common multiple is also used in addition and subtraction of fractions. Highest common factor is the greatest number that divides both the given numbers. Highest common factor can also be calculated by division method as well as by using Euclid’s division lemma.
Complete step-by-step solution:
The numbers given to us in the question are: $12$, $72$, $120$.
We have to find the least common multiple and highest common factor the given three numbers by prime factorization method.
In prime factorization, we represent the numbers as a product of their constituent prime factors. So, we get,
Prime factors of \[12\]$ = 2 \times 2 \times 3$
$ = {2^2} \times 3$
Prime factors of \[72\]$ = 2 \times 2 \times 2 \times 3 \times 3$
$ = {2^3} \times {3^2}$
Prime factors of \[120\]$ = 2 \times 2 \times 2 \times 3 \times 5$
$ = {2^3} \times 3 \times 5$
Now, Least common multiple is a product of common factors with highest power and all other non-common factors. So, finding the least common multiple of the three numbers, we get,
Least common multiple of $12$, $72$ and $120$$ = {2^3} \times {3^2} \times 5$
$ = 8 \times 9 \times 5$
$ = 360$
Hence, the least common multiple of $12$, $72$ and $120$ is $360$.
HCF is the product of the lowest powers of all the common factors.
Now, finding the Highest common factor of $12$, $72$ and $120$, we get,
Highest common factor of $12$, $72$ and $120$$ = {2^2} \times 3$
$ = 4 \times 3 = 12$
So, the highest common factor of $12$, $72$ and $120$ is $12$.
So, the product of HCF and LCM $ = 12 \times 360 = 4320$
Now, the product of the three numbers $ = 12 \times 72 \times 120 = 103680$
So, we can clearly see that the product of LCM and HCF of the three numbers and the product of the three numbers is not equal. Hence, proved.
Note: Least common multiple (LCM) has wide ranging applications in real world as well as in mathematical questions. Knowledge of least common multiple is also used in addition and subtraction of fractions. Highest common factor is the greatest number that divides both the given numbers. Highest common factor can also be calculated by division method as well as by using Euclid’s division lemma.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE